Skip to main content
Log in

Can the structure of a riparian forest remnant influence stream water quality? A tropical case study

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In rural areas, riparian forest remnants can be very important for the maintenance and improvement of stream water quality. We evaluated if a forest remnant influenced stream water quality, and if these results were influenced by forest structure. We sampled reaches from 140 m upstream of the remnant edge until 600 m within the forest remnant. Electric conductivity (EC) and ammonium concentrations decreased as the stream flowed through the remnant, whereas dissolved oxygen, total phosphorus (P), total dissolved P, organic P, and silicate concentrations increased along the remnant. Variation in forest structure was due to a gradient in forest stratification versus tree height and diameter at breast height, and a gradient in tree density versus basal area. More stratified parts of the forest, with smaller trees, resulted in lower EC values and concentrations of total nitrogen and nitrite, whereas higher density of trees resulted in lower levels of total and dissolved P, creating heterogeneity at very local scales. The overall mean influence of this riparian forest remnant improved stream water quality, suggesting that forest remnants have local effects that can be important when managing stream water quality at larger spatial scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Allan, J. D., 2004. Landscapes and riverscapes: the influence of land-use on river ecosystems. Annual Review of Ecology, Evolution and Systematics 35: 257–284.

    Article  Google Scholar 

  • Arnaiz, O. L., A. L. Wilson, R. J. Watts & M. M. Stevens, 2011. Influence of riparian condition on aquatic macroinvertebrate communities in an agricultural catchment in south-eastern Australia. Ecological Research 26: 123–131.

    Article  CAS  Google Scholar 

  • Boggs, K. & T. Weaver, 1994. Changes in vegetation and nutrient pools during riparian succession. Wetlands 14: 98–109.

    Article  Google Scholar 

  • Chakona, A., C. Phiri, T. Chinamaringa & N. Muller, 2009. Changes in biota along a dry-land river in northwestern Zimbabwe: declines and improvements in river health related to land use. Aquatic Ecology 43: 1095–1106.

    Article  Google Scholar 

  • Corbi, J. J., S. Trivinho-Strixino, A. Santos & M. Del Grande, 2006. Diagnóstico ambiental de metais e organoclorados em córregos adjacentes a áreas de cultivo de cana-de-açúcar (Estado de São Paulo, Brasil). Química Nova 29: 61–65.

    Article  Google Scholar 

  • Derry, L. A., A. C. Kurtz, K. Ziegler & O. A. Chadwick, 2005. Biological control of terrestrial silica cycling and export fluxes to watersheds. Nature 433: 728–731.

    Article  PubMed  CAS  Google Scholar 

  • Dietz, J., D. Hölscher, C. Leuschner & Hendrayanto, 2006. Rainfall partitioning in relation to forest structure in differently managed montane forest stands in Central Sulawesi, Indonesia. Forest Ecology and Management 237: 170–178.

    Article  Google Scholar 

  • Dosskey, M. G., P. Vidon, N. P. Gurwick, C. J. Allan, T. P. Duval & R. Lowrance, 2010. The role of riparian vegetation in protecting and improving chemical water quality in streams. Journal of the American Water Resources Association 46: 261–277.

    Article  CAS  Google Scholar 

  • Ericsson, T., 1994. Nutrient dynamics and requirements of forest crops – a review. New Zealand Journal of Forestry Science 24: 133–168.

    Google Scholar 

  • Golterman, H. L., R. S. Clymo & M. A. M. Ohnstad, 1978. Methods for Chemical Analysis of Freshwater. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Harding, J. S., K. Claassen & N. Evers, 2006. Can forest fragments reset physical and water quality conditions in agricultural catchments and act as refugia for forest stream invertebrates? Hydrobiologia 568: 391–402.

    Article  CAS  Google Scholar 

  • Hoffman, C. C., C. Kjaergaard, J. Uusi-Kämppä, H. C. B. Hansen & B. Kronvang, 2009. Phosphorus retention in riparian buffers: review of their efficiency. Journal of Environmental Quality 38: 1942–1955.

    Article  Google Scholar 

  • Jin, C. X., M. J. M. Römkens & F. Griffioen, 2000. Estimating Manning’s roughness coefficient for shallow overland flow in non-submerged vegetative filter strips. American Society of Agricultural and Biological Engineers 43: 1459–1466.

    Google Scholar 

  • Keller, C., F. Guntzer, D. Barboni, J. Labreuche & J.-D. Meunier, 2012. Impact of agriculture on the Si biogeochemical cycle: input from phytolith studies. Comptes Rendus Geoscience 344: 739–746.

    Article  CAS  Google Scholar 

  • Kelly, J. M., J. L. Kovar, R. Sokolowsky & T. B. Moorman, 2007. Phosphorus uptake during four years by different vegetative cover types in a riparian buffer. Nutrient Cycling in Agroecosystems 78: 239–251.

    Article  Google Scholar 

  • Korman, V., 2003. Proposta de interligação das glebas do Parque Estadual de Vassununga (Santa Rita do Passa Quatro, SP). MSc Dissertation, Universidade de São Paulo, Piracicaba.

  • Koroleff, F., 1976. Determination of nutrients. In Grasshoff, K. (ed.), Methods of Seawater Analysis. Verlag Chemie Weinheim, New York: 125–131.

    Google Scholar 

  • Lim, T. T., D. R. Edwards, S. R. Workman, B. T. Larson & L. Dunn, 1998. Vegetated filter strip removal of cattle manure constituents in runoff. Transactions of the ASAE (American Society of Agricultural & Biological Engineers) 41: 1375–1381.

    Article  Google Scholar 

  • Mackereth, F. J. H., J. Heron & J. F. Talling, 1978. Water Analysis: some Revised Methods for Limnologists. Titus Wilson & Sons Ltd, Kendal.

    Google Scholar 

  • Nadkarni, N. M. & M. M. Sumera, 2004. Old-growth forest canopy structure and its relationship to throughfall interception. Forest Science 50: 290–298.

    Google Scholar 

  • Naiman, R. J., H. Décamps & M. E. McClain, 2005. Riparia: ecology, Conservation, and Management of Streamside Communities. Elsevier Academic Press, Amsterdam.

    Google Scholar 

  • Parsons, A. J., A. D. Abrahams & J. Wainwright, 1996. Responses of interrill runoff and erosion rates to vegetation change in Southern Arizona. Geomorphology 14: 311–317.

    Article  Google Scholar 

  • Paula, F. R., S. F. Ferraz, P. Gerhard, C. A. Vettorazzi & A. Ferreira, 2011. Large woody debris and its influence on channel structure in agricultural lands in Southeast Brazil. Environmental Management 48: 750–763.

    Article  PubMed  Google Scholar 

  • Pivello, V. R. & E. M. Varanda, 2005. O Cerrado Pé-de-Gigante: Ecologia e Conservação – Parque Estadual de Vassununga. Secretaria do Meio Ambiente, São Paulo.

    Google Scholar 

  • Roberts, W. M., M. I. Stutter & P. M. Haygarth, 2012. Phosphorus retention and remobilization in vegetated buffer strips: a review. Journal of Environmental Quality 41: 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigues, R. R. & V. L. R. Bononi, 2008. Introdução. In Rodrigues, R. R. & V. L. R. Bononi (eds), Diretrizes para a Conservação e Restauração da Biodiversidade no Estado de São Paulo. Instituto de Botânica, São Paulo: 11–13.

  • Scarsbrook, M. R. & J. Halliday, 1999. Transition from pasture to native forest land-use along stream continua: effects on stream ecosystems and implications for restoration. New Zealand Journal of Marine and Freshwater Research 33: 293–310.

    Article  CAS  Google Scholar 

  • Seber, G. A. F. & C. J. Wild, 2003. Nonlinear Regression. John Wiley & Sons, New York.

    Google Scholar 

  • Setzer, J., 1966. Atlas climático e ecológico do Estado de São Paulo. Comissão Interestadual da Bacia do Paraná-Paraguai, CESP, São Paulo.

    Google Scholar 

  • Shandas, V. & M. Alberti, 2009. Exploring the role of vegetation fragmentation on aquatic conditions: linking upland with riparian areas in Puget Sound lowland streams. Landscape and Urban Planning 90: 66–75.

    Article  Google Scholar 

  • Souza, A. L. T., D. G. Fonseca, R. A. Libório & M. O. Tanaka, 2013. Influence of riparian vegetation and forest structure on the water quality of rural low-order streams in SE Brazil. Forest Ecology and Management 298: 12–18.

    Article  Google Scholar 

  • Stewart, J. S., L. Wang, J. Lyons, J. A. Horwatich & R. Bannerman, 2001. Influences of watershed, riparian-corridor, and reach-scale characteristics on aquatic biota in agricultural watersheds. Journal of the American Water Resources Association 37: 1475–1487.

    Article  Google Scholar 

  • Storey, R. G. & D. R. Cowley, 1997. Recovery of three New Zealand rural streams as they pass through native forest remnants. Hydrobiologia 353: 63–76.

    Article  CAS  Google Scholar 

  • Strickland, J. D. H. & T. R. Parsons, 1960. A manual of seawater analysis. Bulletin Fisheries Research Board of Canada 125: 1–18.

    Google Scholar 

  • Suga, C. M. & M. O. Tanaka, 2013. Influence of a forest remnant on macroinvertebrate communities in a degraded tropical stream. Hydrobiologia 703: 203–213.

    Article  CAS  Google Scholar 

  • Tran, C. P., R. W. Bode, A. J. Smith & G. S. Kleppel, 2010. Land-use proximity as a basis for assessing stream water quality in New York State (USA). Ecological Indicators 10: 727–733.

    Article  CAS  Google Scholar 

  • Valderrama, J. C., 1981. The simultaneous analysis of total nitrogen and phosphorus in natural waters. Marine Chemistry 10: 109–122.

    Article  CAS  Google Scholar 

  • Valett, H. M., C. L. Crenshaw & P. F. Wagner, 2002. Stream nutrient uptake, forest succession, and biogeochemical theory. Ecology 83: 2888–2901.

    Article  Google Scholar 

  • Vitousek, P. M. & W. A. Reiners, 1975. Ecosystem succession and nutrient retention: a hypothesis. BioScience 25: 376–381.

    Article  CAS  Google Scholar 

  • Warren, D. R., C. E. Kraft, W. S. Keeton, J. S. Nunery & G. E. Likens, 2009. Dynamics of wood recruitment in streams of the northeastern US. Forest Ecology and Management 258: 804–813.

    Article  Google Scholar 

Download references

Acknowledgments

We thank all the people who helped in the field work, L.E. Moschini for the map, Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for financial support (Procs. 480181/2010-1, 308630/2010-6), and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the scholarship to the first author.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel O. Tanaka.

Additional information

Handling editor: David Dudgeon

Rights and permissions

Reprints and permissions

About this article

Cite this article

de F. Fernandes, J., de Souza, A.L.T. & Tanaka, M.O. Can the structure of a riparian forest remnant influence stream water quality? A tropical case study. Hydrobiologia 724, 175–185 (2014). https://doi.org/10.1007/s10750-013-1732-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1732-1

Keywords