Skip to main content

Advertisement

Log in

Rebuilding and comparing pyramids of numbers (Elton) and energy (Lindeman) with selected global δ15N data

  • Opinion Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Widespread omnivory in aquatic food webs has been recognized to compromise interpretation of Lindeman’s “pyramid of energy” wherein organism biomass is constrained into rigidly delineated trophic levels. A compilation of global, pre-1997 stable nitrogen isotope data for aquatic food webs produced vertical energy profiles that were ataxonomic and therefore similar to Elton’s “pyramid of numbers” which he believed to be based on size-structured feeding relationships. Further, the present secondary-analysis confirms findings from other recent data compilations in suggesting that aquatic animals in real food webs are rarely found above the fifth or sixth broadly based trophic category. Therefore, δ15N analysis of food webs permits a reconciliation between theoreticians and empiricists by assuming a middle position in estimates made of the vertical length of food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Akin, S. & K. O. Winemiller, 2008. Body size and trophic position in a temperate estuarine food web. Acta Oecologia 33: 144–153.

    Article  Google Scholar 

  • Al-Habsi, S. H., C. J. Sweeting, N. V. Polunin & N. A. Graham, 2008. δ15N and δ13C elucidation of size-structured food webs in a Western Arabian Sea demersal trawl assemblage. Marine Ecology Progress Series 353: 55–63.

    Article  CAS  Google Scholar 

  • Burns, T. P., 1989. Lindeman’s contradiction and the trophic structure of ecosystems. Ecology 70: 1355–1362.

    Article  Google Scholar 

  • Cabana, G. & J. B. Rasmussen, 1994. Modelling food chain structure and contaminant bioaccumulation using stable nitrogen isotopes. Nature 372: 255–257.

    Article  CAS  Google Scholar 

  • Cohen, J. E. & C. M. Newman, 1985. A stochastic theory of community food webs I. Models and aggregated data. Proceedings of the Royal Society of London Series B 224: 421–448.

    Article  Google Scholar 

  • Cohen, J. E., F. Briand & C. M. Newman, 1986. A stochastic theory of community food webs. III. Predicted and observed lengths of food chains. Proceedings of the Royal Society of London Series B 238: 317–353.

    Article  Google Scholar 

  • Cohen, J. E., T. Jonsson & S. R. Carpenter, 2003. Ecological community description using the food web, species abundance, and body size. Proceedings of National Academy Science of the United States of America 100: 1781–1786.

    Article  CAS  Google Scholar 

  • Cousins, S., 1985. Ecologists build pyramids again. New Scientist 1463: 50–54.

    Google Scholar 

  • del Giorgio, P. A. & R. L. France, 1996. Ecosystem-specific patterns in the relationship between zooplankton and POM or microplankton δ13C. Limnology and Oceanography 41: 359–365.

    Article  Google Scholar 

  • Diehl, S., 1993. Relative consumer sizes and the strengths of and indirect interactions in omnivorous feeding relationships. Oikos 68: 151–157.

    Article  Google Scholar 

  • Diehl, S., 1995. Direct and indirect effects of omnivory in a littoral lake community. Ecology 76: 1727–1740.

    Article  Google Scholar 

  • Elton, C., 1927. Animal Ecology. Sidgewick and Jackson Publ., London.

  • Evans-White, M., W. K. Dodds, L. J. Gray & K. M. Fritz, 2001. A comparison of the trophic ecology of the crayfishes (Orconectes nais (Faxon)) and the central stoneroller minnow (Campostoma anomalum (Rafinesque)): omnivory in a tallgrass prairie stream. Hydrobiologia 462: 131–144.

    Article  Google Scholar 

  • France, R. L., 1997. δ15N examination of the Lindeman–Hutchinson–Peters theory of increasing omnivory with trophic height in aquatic foodwebs. Researches on Population Ecology 39: 121–125.

    Article  Google Scholar 

  • France, R. L., 2012. Omnivory, vertical food-web structure and system productivity: stable isotope analysis of freshwater planktonic food webs. Freshwater Biology 57: 787–794.

    Article  Google Scholar 

  • France, R. L. & R. H. Peters, 1997. Ecosystem differences in the trophic enrichment of 13C in aquatic foodwebs. Canadian Journal of Fisheries and Aquatic Sciences 54: 1255–1258.

    Article  Google Scholar 

  • France, R. L., R. H. Peters & Y. T. Prairie, 1994. Adjusting chlorophyll-a estimates through temporal weighting based on the seasonal development of phytobiomass. Aquatic Sciences 56: 106–114.

    Article  Google Scholar 

  • France, R., K. Westcott, P. del Giorgio, G. Klein & J. Kalff, 1996. Vertical foodweb structure of freshwater zooplankton assemblages estimated by stable nitrogen isotopes. Researches on Population Ecology 38: 283–287.

    Article  Google Scholar 

  • France, R., M. Chandler & R. Peters, 1997. Mapping trophic continua of benthic foodwebs: body size-δ15N relationships. Marine Ecology Progress Series 174: 301–306.

    Article  Google Scholar 

  • France, R., J. Loret, R. Mathews & J. Springer, 1998. Longitudinal variation in zooplankton δ13C through the Northwest Passage: inference for incorporation of sea-ice POM into pelagic foodwebs. Polar Biology 20: 335–341.

    Article  Google Scholar 

  • Fry, B., 1991. Stable isotope diagrams of freshwater food webs. Ecology 72: 2293–2297.

    Article  Google Scholar 

  • Fry, B. & R. B. Quinones, 1994. Biomass spectra and stable isotope indicators of trophic level in zooplankton of the northwest Atlantic. Marine Ecology Progress Series 112: 201–204.

    Article  Google Scholar 

  • Gaedke, U., D. Straile, & C. Pahl-Wostl. 1996. Trophic structure and carbon flow dynamics in the pelagic community of a large lake. In Polis, G. A. & K. O. Winemiller (eds), Food Webs, Integration of Patterns & Dynamics. Chapman and Hall, New York: 60–714.

  • Goldwasser, I. & J. Roughgarden, 1993. Construction and analysis of a large Caribbean food web. Ecology 74: 1216–1233.

    Article  Google Scholar 

  • Hakanson, L. & R. H. Peters, 1995. Predictive Limnology: Methods for Predictive Modeling. SPB Academic Publishing, Amsterdam.

  • Hall, S. J. & D. G. Raffaelli, 1993. Food webs: theory and reality. Advances in Ecological Research 24: 187–239.

    Article  Google Scholar 

  • Holyoak, M. & S. Sachdev, 1998. Omnivory and the stability of simple food webs. Oecologia 117: 413–419.

    Article  Google Scholar 

  • Issacs, J. D., 1973. Potential trophic biomasses and trace substance concentrations in unstructured marine food webs. Marine Biology 22: 97–104.

    Article  Google Scholar 

  • Jennings, S. & K. J. Warr, 2003. Smaller predator–prey body size rations in longer food chains. Proceedings of the Royal Society of London Series B 270: 1413–1417.

    Article  PubMed  Google Scholar 

  • Jennings, S., J. K. Pinnegar, N. V. Polunin & T. W. Boon, 2001. Weak cross-species relationships between body size and trophic level belie powerful size-based trophic structuring in fish communities. Journal of Animal Ecology 70: 934–944.

    Article  Google Scholar 

  • Jennings, S., J. K. Pinnegar, N. V. Polunin & K. J. Warr, 2002. Linking size-based and trophic analyses of benthic community structure. Marine Ecology Progress Series 226: 77–85.

    Article  Google Scholar 

  • Kling, G. W., B. Fry & W. J. O’Brien, 1992. Stable isotopes and planktonic trophic structure in arctic lakes. Ecology 73: 561–566.

    Article  Google Scholar 

  • Layman, C. A., K. O. Winemiller, D. A. Arrington & D. B. Jepsen, 2005. Body size and trophic position in a diverse tropical food web. Ecology 86: 2530–2535.

    Article  Google Scholar 

  • Lindeman, R. L., 1942. The trophodynamic aspect of ecology. Ecology 23: 399–418.

    Article  Google Scholar 

  • Martinez, N. D., 1991. Artifacts or attributes? Effects of resolution on the Little Rock Lake food web. Ecological Monographs 61: 367–392.

    Article  Google Scholar 

  • May, R. M., 1983. The structure of food webs. Nature 301: 566–568.

    Article  Google Scholar 

  • Mingawa, M. & E. Wada, 1984. Stepwise enrichment of 15N along food chains: further evidence and the relation to environmental stress and recruitment. Geochimica Cosmochimica Acta 48: 1135–1340.

    Article  Google Scholar 

  • Nakazawa, T., Y. Sakai, C. Hsieh, T. Koitashi, N. Yamamura & N. Okuda, 2010. Is the relationship between body size and trophic niche position time-invariant in a predatory fish? First stable isotope evidence. PLoS 5: 1–5.

    Google Scholar 

  • Owens, N. J. P., 1987. Natural variations in 15N in the marine environment. Advances in Marine Biology 24: 389–451.

    Article  Google Scholar 

  • Pahl-Wostl, C., 1993. Food webs and ecological networks across temporal and spatial scales. Oikos 66: 415–432.

    Article  Google Scholar 

  • Paine, R. T., 1996. Preface. In Polis, G. A. & K. O. Winemiller (eds), Food Webs, Integration of Patterns & Dynamics. Chapman & Hall, New York.

  • Peters, R. H., 1986. The role of prediction in limnology. Limnology and Oceanography 31: 1143–1159.

    Article  CAS  Google Scholar 

  • Peters, R. H., 1988. Some general problems for ecology illustrated by food web theory. Ecology 69: 1673–1676.

    Article  Google Scholar 

  • Peters, R. H., 1993. Ecological Implications of Body Size. Cambridge University Press, Cambridge.

  • Pimm, S. L. & J. H. Lawton, 1977. Number of trophic levels in ecological communities. Nature 268: 329–331.

    Article  Google Scholar 

  • Pimm, S. L. & J. H. Lawton, 1978. On feeding on more than one trophic level. Nature 275: 542–544.

    Article  Google Scholar 

  • Polis, G. A., 1991. Complex trophic interactions in deserts: an empirical critique of food web theory. American Naturalist 138: 123–155.

    Article  Google Scholar 

  • Post, D. M., 2002a. Using stable isotopes to estimate trophic position: models, methods, and assumptions. Ecology 83: 703–708.

    Article  Google Scholar 

  • Post, D. M., 2002b. The long and short of food chain length. Trends in Ecology Evolution 17: 269–277.

    Article  Google Scholar 

  • Post, D. M. & G. Takimoto, 2007. Proximate structural mechanisms for variation in food-chain length. Oikos 116: 775–783.

    Article  Google Scholar 

  • Post, D. M., M. L. Pace & N. G. Hairston, 2000. Ecosystem size determines food-chain length in lakes. Nature 405: 1047–1049.

    Article  PubMed  CAS  Google Scholar 

  • Saunders, P. T., 1978. Population dynamics and the length of food chains. Nature 272: 189–190.

    Article  Google Scholar 

  • Sprules, W. G. & J. E. Bowerman, 1988. Omnivory and food chain length in zooplankton food webs. Ecology 69: 418–426.

    Article  Google Scholar 

  • Strayer, D., 1992. Notes on Lindeman’s progressive efficiency. Ecology 72: 348–350.

    Article  Google Scholar 

  • Takimoto, G., D. A. Spille & D. M. Post, 2008. Ecosystem size, but not disturbance, determines food-chain length on islands of the Bahamas. Ecology 89: 3001–3007.

    Article  Google Scholar 

  • Thompson, R. M., M. Hemberg, B. M. Starzomski & J. B. Shurin, 2007. Trophic levels and trophic tangles: the prevalence of omnivory in real food webs. Ecology 88: 612–617.

    Article  PubMed  Google Scholar 

  • Vadas, R. L., 1990. The importance of omnivory and predator regulation of prey in freshwater fish assemblages of North America. Environmental Biology of Fishes 27: 285–302.

    Article  Google Scholar 

  • Vadeboncoeur, Y., K. S. McCann, M. J. Vander Zanden & J. B. Rasmussen, 2005. Effects of multi-chain omnivory on the strength of trophic control in lakes. Ecosystems 8: 682–693.

    Article  Google Scholar 

  • Vander Zanden, M. J. & W. W. Fetzer, 2007. Global patterns of aquatic food chain length. Oikos 116: 1378–1388.

    Article  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 1996. A trophic position model of pelagic food webs: impact on contaminant bioaccumulation in lake trout. Ecological Monographs 66: 451–477.

    Article  Google Scholar 

  • Vander Zanden, M. J. & J. B. Rasmussen, 2001. Variation in δ15N and δ13C trophic fractionation: implications for aquatic food web studies. Limnology and Oceanography 46: 2061–2066.

    Article  CAS  Google Scholar 

  • Vander Zanden, M. J., G. Cabana & J. B. Rasmussen, 1997. Comparing trophic position of freshwater fish calculated using stable nitrogen isotope ratios (δ15N) and literature dietary data. Canadian Journal of Fisheries and Aquatic Sciences 54: 1142–1158.

    Article  Google Scholar 

  • Vander Zanden, M. J., B. J. Shuter, N. Lester & J. B. Rasmussen, 1999. Patterns of food chain length in lakes: a stable isotope study. American Naturalist 154: 406–416.

    Article  PubMed  Google Scholar 

  • Warren, P. H. & J. H. Lawton, 1987. Invertebrate predator-prey body size relationships: an explanation of upper triangularity in food webs and patterns in food web structure. Oecologia 74: 231–235.

    Article  Google Scholar 

  • Whall, J. D. & D. C. Lasenby, 2009. Differences in the trophic role of Mysis diluviana in two intermontane lakes. Aquatic Biology 5: 281–292.

    Article  Google Scholar 

  • Wilson, R. M., J. Chanton, G. Lewis & D. Nowacek, 2009. Isotopic variation (δ15N, δ13C, and δ34S) with body size in post-larval estuarine consumers. Estuarine, Coastal and Shelf Science 63: 307–312.

    Article  Google Scholar 

  • Winemiller, K. O., 1990. Spatial and temporal variation in tropical fish trophic networks. Ecological Monographs 60: 331–367.

    Article  Google Scholar 

  • Yodzis, P., 1981. The stability of real ecosystems. Nature 289: 674–676.

    Article  Google Scholar 

  • Yodzis, P., 1984. Energy flow and the vertical structure of real ecosystems. Oecologia 65: 86–88.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. L. France.

Additional information

Handling editor: Katya E. Kovalenko

Rights and permissions

Reprints and permissions

About this article

Cite this article

France, R.L. Rebuilding and comparing pyramids of numbers (Elton) and energy (Lindeman) with selected global δ15N data. Hydrobiologia 722, 1–7 (2014). https://doi.org/10.1007/s10750-013-1710-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1710-7

Keywords

Navigation