, Volume 737, Issue 1, pp 77–85 | Cite as

Diversity of macrophyte communities and their relationship to water quality in different types of lowland rivers in Poland

  • Krzysztof SzoszkiewiczEmail author
  • Anna Budka
  • Dariusz Kayzer
  • Karol Pietruczuk


The aim of the study was to verify botanical and ecological traits of river typology based on macrophytes. We compared diversities of macrophyte communities in different river types and their relationship to water quality. The 240 surveyed rivers were situated in the central-west of Poland in a lowland area. Species compositional similarities were analysed using the Jaccard index. The macrophyte matrix was classified into four groups: Large rivers (LR), Sandy rivers (SaR), Stony rivers (StR) and Organic rivers (OR). The highest level of homogeneity was found for LR, followed by OR, StR and SaR. The greatest differences in species composition were found between LR and StR. Variabilities of indices (species richness, Shannon, Simpson and Pielou indices, and total cover) confirmed the specific diversity patterns in the four types of rivers. All metrics based on relative abundance were strongly correlated with each other, and they were never correlated with water quality. The total covers of LR and OR as well as species richness of LR show some correlation with water quality. The total cover was correlated with water quality in OR and LR. The communities with the highest species richness were related with OR.


Macrophytes Rivers Biodiversity Plant ecology River types Diversity indices European macrophyte classifications WFD intercalibration 


  1. Baattrup-Pedersen, A., K. Sz1oszkiewicz, R. Nijboer, M. O’Hare & T. Ferreira, 2006. Macrophyte communities in unimpacted European streams: variability in assemblage patterns, abundance and diversity. Hydrobiologia 566: 179–196.Google Scholar
  2. Baattrup-Pedersen, A., G. Springe, T. Riis, S. E. Larsen, K. Sand-Jensen & L. M. Kjellerup Larsen, 2008. The search for reference conditions for stream vegetation in northern Europe. Freshwater Biology 53: 1890–1901.CrossRefGoogle Scholar
  3. Birk, S. B. & N. J. Willby, 2010. Towards harmonization of ecological quality classification: establishing common grounds in European macrophyte assessment for rivers. Hydrobiologia 652: 149–163.CrossRefGoogle Scholar
  4. Budka, A., K. Borowiak, J. Zbierska, D. Kayzer & W. Krzesiński, 2011. Application of a multidimensional linear model to compare degrees of tobacco leaf injury caused by tropospheric ozone at rural and urban exposure sites. Fresenius Environmental Bulletin 4: 969–975.Google Scholar
  5. Clarke, K. R., 1993. Non-parametric multivariate analysis of change in community structure. Australian Journal of Ecology 10: 117–143.CrossRefGoogle Scholar
  6. Digby, P. G. & R. A. Kempton, 1987. Multivariate Analysis of Ecological Communities. Chapman and Hall, London.CrossRefGoogle Scholar
  7. Dodkins, I., B. Rippey, T. J. Harrington, C. Bradley, B. N. Chathain, M. Kelly, M. Quinn, M. McGarrigle, S. Hodge & D. Trigg, 2005. Developing an optimal river typology for biological elements within the Water Framework Directive. Water Research 39: 3479–3486.PubMedCrossRefGoogle Scholar
  8. ECOSTAT (CIS WG 2.A Ecological Status), 2004. Overview of common intercalibration types. Final version for finalisation of the intercalibration network spring 2004. Version 5.1, 23 April 2004. Joint Research Centre, Ispra.Google Scholar
  9. Engelhardt, K. A. M. & M. E. Ritchie, 2001. Effects of macrophyte species richness on wetland ecosystem functioning and services. Nature 411: 687–689.PubMedCrossRefGoogle Scholar
  10. European Commission, 2000. Directive 2000/60/EC of the European Parliament: establishing a framework for Community action in the field of water policy. Official Journal of the European Communities L 327: 1–72.Google Scholar
  11. Ferreira, M. T., A. Albuquerque, F. C. Aguiar & N. Sidorkewicz, 2002. Assessing reference sites and ecological quality of river plant assemblages from an Iberian basin using a multivariate approach. Archiv für Hydrobiologie 155: 121–145.Google Scholar
  12. Haury, J., M.-C. Peltre, M. Tremolieres, J. Barbe, G. Thiebaut, I. Bernez, H. Daniel, P. Chatenet, G. Haan-Archipof, S. Muller, A. Dutartre, C. Laplace-Treyture, A. Cazaubon & E. Lambert-Servien, 2006. A new method to assess water trophy and organic pollution – the Macrophyte Biological Index for Rivers (IBMR): its application to different types of river and pollution. Hydrobiologia 570: 153–158.CrossRefGoogle Scholar
  13. Jaccard, P., 1912. The distribution of flora in the alpine zone. The New Phytologist 11(2): 37–50.CrossRefGoogle Scholar
  14. Jackson, J. E., 1991. User’s Guide to Principal Components. Wiley, New York.CrossRefGoogle Scholar
  15. Jolliffe, I. T., 2002. Principal Component Analysis. Springer, New York.Google Scholar
  16. Kayzer, D., K. Borowiak, A. Budka & J. Zbierska, 2009. Study of interaction in bioindication research on tobacco plant injuries caused by ground level ozone. Environmetrics 20: 666–675.CrossRefGoogle Scholar
  17. Lejeune, M. & T. Caliński, 2000. Canonical analysis applied to multivariate analysis of variance. Journal of Multivariate Analysis 72: 100–119.CrossRefGoogle Scholar
  18. Meilinger, P., S. Schneider & A. Melzer, 2005. The Reference Index method for the macrophyte-based assessment of rivers – a contribution to the implementation of the European Water Framework Directive in Germany. International Review of Hydrobiology 90(3): 322–342.CrossRefGoogle Scholar
  19. Pielou, E. C., 1969. An Introduction to Mathematical Ecology. Wiley-Interscience, New York.Google Scholar
  20. Schaumburg, J., C. Schranz, J. Foerster, A. Gutowski, G. Hofmann, P. Meilinger, S. Schneider & U. Schmedtje, 2004. Ecological classification of macrophytes and phytobenthos for rivers in Germany according to the Water Framework Directive. Limnologica 34: 283–301.CrossRefGoogle Scholar
  21. Shannon, C. E. & W. Weaver, 1949. The Mathematical Theory of Communication. University of Illinois Press, Urbana.Google Scholar
  22. Simpson, E. H., 1949. Measurement of diversity. Nature 163: 688.CrossRefGoogle Scholar
  23. Szoszkiewicz, K., Sz. Jusik, A. E. Ławniczak, T. Zgola & M. Szwabińska, 2010a. Variation of macrophytes in different types of reference lowland rivers [in Polish]. Woda-Środowisko-Obszary Wiejskie 10, 3(31): 297–308.Google Scholar
  24. Szoszkiewicz, K., J. Zbierska, Sz. Jusik & T. Zgoła, 2010b. Macrophyte river assessment method. A textbook on assessment and classification of rivers based on aquatic plants [in Polish]. Bogucki Wydawnictwo Naukowe Poznań.Google Scholar
  25. Szoszkiewicz, K., J. Zbierska, R. Staniszewski & Sz. Jusik, 2009. The variability of macrophyte metrics used in river monitoring. Oceanological and Hydrobiological Studies 38: 117–126.CrossRefGoogle Scholar
  26. Tai, G. C. C., 1999. Canonical variate analysis of genotype environment interactions. Canadian Journal of Plant Science 79(3): 427–431.CrossRefGoogle Scholar
  27. Van de Bund, W. J., 2009. Water Framework Directive Intercalibration Technical Report. Part 1: rivers. JRC Scientific and Technical Reports.Google Scholar
  28. Van de Weyer, K., 2003. Kartieranleitung zur Erfassung und Bewertung der aquatischen Makrophyten der Fließgewässer in NRW gemäß den Vorgaben der EU-Wasser-Rahmenrichtlinie. Landesumweltamt Nordrhein-Westfalen (LUA), Merkblätter 39: 1–60.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Krzysztof Szoszkiewicz
    • 1
    Email author
  • Anna Budka
    • 2
  • Dariusz Kayzer
    • 2
  • Karol Pietruczuk
    • 3
  1. 1.Department of Ecology and Environment ProtectionPoznan University of Life SciencesPoznanPoland
  2. 2.Department of Mathematical and Statistical MethodsPoznan University of Life SciencesPoznanPoland
  3. 3.Provincial Environmental InspectoratePoznanPoland

Personalised recommendations