Skip to main content

A trait-based approach to assess the vulnerability of European aquatic insects to climate change

Abstract

Aquatic insects are the dominant taxon group in most freshwater ecosystems. As temperature is the main driver of their life cycle development, metabolic activity, and geographic distribution, these macroinvertebrates are particularly suitable for large scale and comparative studies of freshwater community responses to climate change. A dataset of bio-ecological traits of 1,942 Ephemeroptera, Plecoptera, and Trichoptera (EPT) taxa was used to analyze (1) the relationships among traits, (2) the potential vulnerability of EPT species to climate change, and (3) the geographical occurrence patterns of these potentially endangered species at the scale of European ecoregions. By means of a fuzzy correspondence analysis (FCA), two gradients emerged: (1) a longitudinal gradient, describing successive upstream–downstream features, and (2) a biogeographical gradient, separating endemic and micro-endemic species from widely distributed taxa. Moreover, aquatic insects of southern European ecoregions emerged as those most endangered in terms of potential vulnerability to climate change. Comparative multi-taxon studies provide important new insights into freshwater ecosystem functioning and responses to climate change, and could be the first step toward developing integrative monitoring or assessment tools (e.g., trait-based indicators at the species level) by means of non-arbitrary statistical methods.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Ausserer, C., 1869. Neurotteri tirolesi colla diagnosi di tutti i generi Europei. Parte I. Pseudoneurotteri. Annuario della Societa di Naturalisti in Modena 4: 71–156.

    Google Scholar 

  • Allan, J. D. & A. S. Flecker, 1993. Biodiversity conservation in running waters. BioScience 43: 32–43.

    Article  Google Scholar 

  • Baird, D. J., M. N. Rubach & P. J. Van den Brinkt, 2008. Trait-based ecological risk assessment (TERA): the new frontier? Integrated Environment Management 4: 2–3.

    Article  Google Scholar 

  • Bálint, M., S. Domisch, E. H. M. Engelhardt, P. Haase, S. Lehrian, J. Sauer, K. Theissinger, S. U. Pauls & C. Nowak, 2011. Cryptic biodiversity loss linked to global climate change. Nature Climate Change 1: 313–318.

    Article  Google Scholar 

  • Bálint, M., K. Málnás, C. Nowak, J. Geismar, É. Váncsa, L. Polyák, S. Lengyel & P. Haase, 2012. Species history masks the effects of human-induced range loss—unexpected genetic diversity in the endangered giant mayfly Palingenia longicauda. PLoS ONE 7: e31872. doi:10.1371/journal.pone.0031872.

    PubMed  Article  Google Scholar 

  • Bohonak, A. J. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.

    Article  Google Scholar 

  • Bonada, N., S. Dolédec & B. Statzner, 2007. Taxonomic and biological trait differences of stream macroinvertebrate communities between mediterranean and temperate regions: implication for future climatic scenarios. Global Change Biology 13: 1658–1671.

    Article  Google Scholar 

  • Brauer, F., & F. Löw, 1857. Neuroptera austriacus. Die im Erzherzogthum Oesterreich bis jetzt aufgefundenen Neuropteren nach der analytischen Methode zusammengestellt, nebst einer kurzen Charakteristik aller europäischen Neuropteren Gattungen. Verlag Carl Gerold’s Sohn: 27–31.

  • Brittain, J. E., 1980. The biology of mayflies. Annual Review of Enthomology 27: 119–147.

    Article  Google Scholar 

  • Brittain, J. E., 1991. Life history characteristics as a determinant of the response of mayflies and stoneflies to man-made environmental disturbance. In Alba-Tercedo, J. (ed.), Overview and Strategies of Ephemeroptera and Plecoptera. Sandhill Press, Gainesville, FL: 10–12.

    Google Scholar 

  • Brittain, J. E., 2008. Mayflies, biodiversity and climate change. In Hauer, F. R., J. A. Stanford & R. L. Newell (eds), International Advances in the Ecology, Zoogeography and Systematics of Mayflies and Stoneflies, Vol. 128. University of California Publications in Entomology, California: 1–14.

    Chapter  Google Scholar 

  • Brown, L. E., R. Céréghino & A. Compin, 2009. Endemic freshwater invertebrates from southern France: diversity, distribution and conservation implications. Biological Conservation 142: 2613–2619.

    Article  Google Scholar 

  • Buffagni, A., D. G. Armanini, M. Cazzola, J. Alba-Tercedor, M. J. López-Rodríguez, J. Murphy, L. Sandin & A. Schmidt-Kloiber, 2007. Ephemeroptera Indicator Database. Euro-limpacs project, Workpackage 7—Indicators of ecosystem health, Task 4 [available on internet at www.freshwaterecology.info, version 5.0]. Accessed on November 3, 2011.

  • Buffagni, A., M. Cazzola, M. J. López-Rodríguez, J. Alba-Tercedor & D. G. Armanini, 2009. Ephemeroptera. In Schmidt-Kloiber, A. & D. Hering (eds), Distribution and Ecological Preferences of European Freshwater Organisms, Vol. 3. Pensoft Publishers, Sofia-Moscow.

    Google Scholar 

  • Chevenet, F., S. Dolédec & D. Chessel, 1994. A fuzzy coding approach for the analysis of long-term ecological data. Freshwater Biology 31: 295–309.

    Article  Google Scholar 

  • Collier, K. J., 2008. Temporal patterns in the stability, persistence and condition of stream macroinvertebrate communities: relationships with catchment land-use and regional climate. Freshwater Biology 53: 603–616.

    Article  Google Scholar 

  • Culp, J. M., G. D. Armanini, M. J. Dunbar, J. M. Orlofske, N. L. Poff & A. I. Pollard, 2011. Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction. Integrated Environmental Assessment and Management 7: 187–197.

    PubMed  Article  Google Scholar 

  • Dolédec, S. & B. Statzner, 2008. Invertebrate traits for the biomonitoring of large European rivers: an assessment of specific types of human impacts. Freshwater Biology 53: 617–634.

    Article  Google Scholar 

  • Dolédec, S., B. Statzner & M. Bournard, 1999. Species traits for future biomonitoring across ecoregions: patterns along a human-impacted river. Freshwater Biology 42: 737–758.

    Article  Google Scholar 

  • Dolédec, S., N. Phillips, M. Scarsbrook, R. H. Riley & C. R. Townsend, 2006. Comparison of structural and functional approaches to determining land use effects on grassland stream invertebrate communities. Journal of the North American Benthological Society 25: 44–60.

    Article  Google Scholar 

  • Domisch, S., S. C. Jähnig & P. Haase, 2011. Climate-change winners and losers: stream macroinvertebrates of a submontane region in Central Europe. Freshwater Biology 56: 2009–2020.

    Article  Google Scholar 

  • Domisch, S., M. B. Araujo, N. Bonada, S. U. Pauls, S. C. Jähnig & P. Haase, 2013. Modelling distribution in European stream macroinvertebrates under future climates. Global Change Biology 19: 752–762.

    PubMed  Article  Google Scholar 

  • Dudgeon, D., A. H. Arthington, M. O. Gessner, Z. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A. H. Prieur-Richard, D. Soto, M. L. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biology Reviews of the Cambridge Philosophical Society 81: 163–182.

    Article  Google Scholar 

  • Durance, I. & S. J. Ormerod, 2007. Climate change effects on upland stream macroinvertebrates over a 25-year period. Global Change Biology 13: 942–957.

    Article  Google Scholar 

  • Feio, J. M. & S. Dolédec, 2012. Integration of invertebrate traits into predictive models for indirect assessment of stream functional integrity: a case study in Portugal. Ecological Indicators 15: 236–247.

    Article  CAS  Google Scholar 

  • Fochetti, R. & J. M. Tierno de Figueroa, 2006. Notes on diversity and conservation of the European fauna of Plecoptera (Insecta). Journal of Natural History 40: 2361–2369.

    Article  Google Scholar 

  • Füssel, H.-M., 2007. Vulnerability: A generally applicable conceptual framework for climate change research. Global Environmental Change 17: 155–167.

    Article  Google Scholar 

  • Galic, N., G. M. Hengeveld, P. J. Van den Brink, A. Schmolke, P. Thorbek, E. Bruns & H. M. Baveco, 2013. Persistence of aquatic insects across managed landscapes: effects of landscape permeability on re-colonization and population recovery. PLoS ONE 8(1): e54584.

    PubMed  Article  CAS  Google Scholar 

  • Graf, W., & A. Schmidt-Kloiber, 2011. Additions to and update of the Trichoptera Indicator Database [available on internet at www.freshwaterecology.info, version 5.0]. Accessed on November 3, 2011.

  • Graf, W., J. Murphy, J. Dahl, C. Zamora-Muñoz, M. J. López-Rodríguez & A. Schmidt-Kloiber, 2006. Trichoptera Indicator Database. Euro-limpacs project, Workpackage 7—Indicators of ecosystem health, Task 4 [available on internet at www.freshwaterecology.info, version 5.0]. Accessed on November 3, 2011.

  • Graf, W., A.W. Lorenz, J. M. Tierno de Figueroa, S. Lücke, M. J. López-Rodríguez, J. Murphy & A. Schmidt-Kloiber, 2007. Plecoptera Indicator Database. Euro-limpacs project, Workpackage 7 - Indicators of ecosystem health, Task 4, www.freshwaterecology.info, version 5.0 (accessed on November 3, 2011).

  • Graf, W., J. Murphy, J. Dahl, C. Zamora-Muñoz & M. J. López-Rodríguez, 2008a. Trichoptera. In Schmidt-Kloiber, A. & D. Hering (eds), Distribution and Ecological Preferences of European Freshwater Organisms, Vol. 1. Pensoft Publishers, Sofia-Moscow.

    Google Scholar 

  • Graf, W., D. Stradner & S. Weiss, 2008b. A new Siphonoperla species from the Eastern Alps (Plecoptera: Chloroperlidae), with comments on the genus. Zootaxa 1891: 31–38.

    Google Scholar 

  • Graf, W., A. W. Lorenz, J. M. Tierno de Figueroa, S. Lücke, M. J. López-Rodríguez & C. Davies, 2009a. Plecoptera. In Schmidt-Kloiber, A. & D. Hering (eds), Distribution and Ecological Preferences of European Freshwater Organisms, Vol. 2. Pensoft Publishers, Sofia-Moscow.

    Google Scholar 

  • Graf, W., J. Waringer & S. U. Pauls, 2009b. A new feeding group within larval Drusinae (Trichoptera: Limnephilidae): the alpinus-group sensu Schmid, 1956, including larval descriptions of Drusus franzi Schmid, 1956 and Drusus alpinus (Meyer-Dür, 1875). Zootaxa 2031: 53–62.

    Google Scholar 

  • Graf, W., M. Kučinič, A. Previšič, S. U. Pauls & J. Waringer, 2011. The larva of Ecclisopteryx malickyi Moretti, 1991 (Trichoptera: Limnephilidae: Drusinae) with comments on the genus. Zoosymposia 5: 136–143.

    Google Scholar 

  • Haidekker, A. & D. Hering, 2008. Relationship between benthic insects (Ephemeroptera, Plecoptera, Coleoptera, Trichoptera) and temperature in small and medium-sized streams in Germany: a multivariate study. Aquatic Ecology 42: 463–481.

    Article  Google Scholar 

  • Hannah, D. M., L. E. Brown, A. M. Milner, A. M. Gurnell, G. R. McGregor, G. E. Petts, B. P. G. Smith & D. L. Snook, 2007. Integrating climate–hydrology–ecology for alpine river systems. Aquatic Conservation: Marine and Freshwater Ecosystems 17: 636–656.

    Article  Google Scholar 

  • Heino, J., R. Virkkala & H. Toivonen, 2009. Climate change and freshwater biodiversity: detected patterns, future trends and adaptations in northern regions. Biological Reviews 84: 39–54.

    PubMed  Article  Google Scholar 

  • Hering, D., A. Schmidt-Kloiber, J. Murphy, S. Lücke, C. Zamora-Muñoz, M. J. López-Rodríguez, T. Huber & W. Graf, 2009. Potential impact of climate change on aquatic insects: a sensitivity analysis of European caddisflies (Trichoptera) based on distribution patterns and ecological preferences. Aquatic Science 71: 3–14.

    Article  Google Scholar 

  • Hodkinson, I. D. & J. J. Jackson, 2005. Terrestrial and aquatic invertebrates as bioindicators for environmental monitoring, with particular reference to mountain ecosystems. Environmental Management 35: 649–666.

    PubMed  Article  Google Scholar 

  • Hof, C., M. Brändle & R. Brandl, 2008. Latitudinal variation of diversity in European freshwater animals is not concordant across habitat types. Global Ecology and Biogeography 17: 539–546.

    Article  Google Scholar 

  • Hof, C., M. Brändle, D. M. Dehling, M. Munguía, R. Brandl, M. B. Araújo & C. Rahbek, 2012. Habitat stability affects dispersal and the ability to track climate change. Biological Letters 8: 639–643.

    Article  Google Scholar 

  • Illies, J., 1978. Limnofauna Europaea. Gustav Fisher, New York.

    Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change), 2007. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Jackson, R. B., S. R. Carpenter, C. N. Dahm, D. M. McKnight, R. J. Naiman, S. L. Postel & S. W. Runninn, 2001. Water in a changing world. Ecological Applications 11: 1027–1045.

    Article  Google Scholar 

  • Jenkins, M., 2003. Prospects for biodiversity. Science 302: 1175–1177.

    PubMed  Article  CAS  Google Scholar 

  • Johns, T. C., J. M. Gregory, W. J. Ingram, C. E. Johnson, A. Jones, J. A. Lowe, J. F. B. Mitchell, D. L. Roberts, D. M. H. Sexton, D. S. Stevenson, S. F. B. Tett & M. J. Woodage, 2003. Anthropogenic climate change for 1860 to 2100 simulated with the HadCM3 model under updated emissions scenarios. Climate Dynamics 20: 593–612.

    Google Scholar 

  • Kazanci, N. & M. Dügel, 2008. Prediction of global climate change impact on structure of aquatic insect assemblages by using species optimum and tolerance values of temperature. Review of Hydrobiology 2: 73–80.

    Google Scholar 

  • Keyghobadi, N., 2007. The genetic implications of habitat fragmentation for animals. Canadian Journal of Zoology 85: 1049–1064.

    Article  Google Scholar 

  • Kotiaho, J. S., A. Kaitala & J. Paivinen, 2005. Predicting the risk of extinction from shared ecological characteristics. Proceedings of the National Academy of Sciences of the States of America-Biological Sciences 102: 1963–1967.

    Article  CAS  Google Scholar 

  • Kühtreiber, J., 1934. Plekopterenfauna Nordtirols. Sonderabdruck aus den Berichten des Naturwissenschaftlich-Medizinischen Vereines in Innsbruck, XLIII/XLIV (1931/32 - 1933/34): 1–214.

  • Lande, R., 1993. Risk of population extinction from demographic and environmental stochasticity and random catastrophes. The American Naturalist 142: 911–927.

    Article  Google Scholar 

  • Lawrence, J. E., K. B. Lunde, R. D. Mazor, L. A. Bêche, E. P. McElarvy & V. H. Resh, 2010. Long-term macroinvertebrate responses to climate change: implications for biological assessment in mediterranean-climate streams. Journal of North American Benthological Society 29: 1424–1440.

    Article  Google Scholar 

  • Lillehammer, A., J. E. Brittain, S. J. Saltveit & P. S. Nielsen, 1989. Egg development, nymphal growth and life cycle strategies in Plecoptera. Holarctic Ecology 12: 173–186.

    Google Scholar 

  • Malmqvist, B., 2000. How does wing length relate to distribution patterns of stoneflies (Plecoptera) and mayflies (Ephemeroptera)? Biological Conservation 93: 271–276.

    Article  Google Scholar 

  • Marten, M., 1990. Interspecific variation in temperature dependence of egg development of five congeneric stonefly species (Protonemura Kempny, 1898, Nemouridae, Plecoptera). Hydrobiologia 199: 157–171.

    Article  Google Scholar 

  • Menezes, S., J. B. Baird & A. M. V. M. Soares, 2010. Beyond taxonomy: a review of macroinvertebrate trait-based community descriptors as tools for freshwater biomonitoring. Journal of Applied Ecology 47: 711–719.

    Article  Google Scholar 

  • Moog, O., 1995. Fauna Aquatica Austriaca, Lieferung Mai/95. Wasserwirtschaftskataster, Bundesministerium fur Land- und Forstwirtschaft, Wien.

    Google Scholar 

  • Müller-Peddinghaus, E. & D. Hering, 2013. The wing morphology of limnephilid caddisflies in relation to their habitat preferences. Freshwater Biology 58: 1138–1148.

    Article  Google Scholar 

  • Naiman, R. J. & M. G. Turner, 2000. A future perspective on North America’s freshwater ecosystems. Ecological Applications 10: 958–970.

    Article  Google Scholar 

  • Perkins, D. M., J. Reiss, G. Yvon-Durocher & G. Woodward, 2010. Global change and food webs in running waters. Hydrobiologia 657: 181–198.

    Article  Google Scholar 

  • Poff, N. L., 1997. Landscape filters and species traits: towards mechanistic understanding and prediction in stream ecology. Journal of the North American Benthological Society 16: 391–409.

    Article  Google Scholar 

  • Poff, N. L., J. D. Olden, N. K. M. Vieira, D. S. Finn, M. P. Simmons & B. C. Kondratieff, 2006. Functional trait niches of North American lotic insects: traits-based ecological applications in light of phylogenetic relationships. Journal of North American Benthological Society 25: 730–755.

    Google Scholar 

  • Rahel, F. J., 2002. Homogenization of freshwater faunas. Annual Review of Ecology and Systematics 33: 291–325.

    Article  Google Scholar 

  • Resh, V. H. & D. M. Rosenberg, 1989. Spatial-temporal variability and the study of aquatic insects? The Canadian Entomologist 121: 941–963.

    Article  Google Scholar 

  • Revenga, C., I. Campbell, R. Abell, P. de Villiers & M. Bryer, 2005. Prospects for monitoring freshwater ecosystems towards the 2010 targets. Philosophical Transactions of the Royal Society of London Series B-Biological Sciences 360: 397–413.

    Article  CAS  Google Scholar 

  • Rijnsdorp, A. D., M. A. Peck, G. H. Engelhard, C. Mollmann & J. K. Pinnegar, 2009. Resolving the effect of climate change on fish populations. International Council for the Exploitation of the Sea Journal of Marine Science 66: 1570–1583.

    Google Scholar 

  • Rouse, W. R., M. S. V. Douglas, R. E. Hecky, A. E. Hershey, G. W. Kling, L. Lesack, P. Marsh, M. McDonald, B. J. Nicholson, N. T. Roulet & J. P. Smol, 1997. Effects of climate change on the freshwaters of Arctic and subarctic North America. Hydrological Processes 11: 873–902.

    Article  Google Scholar 

  • Russev, B. K., 1987. Ecology, life history and distribution of Palingenia longicauda (Olivier) (Ephemeroptera). Tijdschrift voor Entomologie 130: 109–127.

    Google Scholar 

  • Sala, O. E., F. S. Chapin, J. J. Armesto, R. Berlow, J. Bloomfield, R. Dirzo, E. Huber-Sanwald, L. F. Huenneke, R. B. Jackson, A. Kinzig, R. Leemans, D. M. Lodge, H. A. Mooney, M. Oesterheld, N. L. Poff, M. T. Skyes, B. H. Walker, M. Wamker & D. H. Hall, 2000. Global biodiversity scenarios for the year 2100. Science 287: 1770–1774.

    PubMed  Article  CAS  Google Scholar 

  • Sartori, M., & P. Landolt, 1998. Memorandum concernant la candidature de Palingenia longicauda (Olivier, 1791) (Insecta: Ephemeroptera) a son inscription en annexe de la Convention de Berne. Document T-PVS (98) 15. Council of Europe, Strasbourg.

  • Schindler, D. W., 2001. The cumulative effects of climate warming and other human stresses on Canadian freshwaters in the new millennium. Canadian Journal of Fisheries and Aquatic Sciences 58: 18–29.

    Article  Google Scholar 

  • Schmidt-Kloiber, A., & D. Hering (eds), 2012. The taxa and autoecology database for freshwater organisms, version 5.0 [available on internet at www.freshwaterecology.info]. Accessed on November 3, 2011.

  • Statzner, B. & L. A. Bêche, 2010. Can biological invertebrate traits resolve effects of multiple stressors on running water ecosystems? Freshwater Biology 55: 80–119.

    Article  Google Scholar 

  • Statzner, B., A. G. Hildrew & V. H. Resh, 2001. Species traits and environmental constraints: entomological research and the history of ecological theory. Annual Review of Entomology 46: 291–316.

    PubMed  Article  CAS  Google Scholar 

  • Strayer, D. L., 2010. Alien species in fresh waters: ecological effects, interactions with other stressors, and prospects for the future. Freshwater Biology 55: 152–174.

    Article  Google Scholar 

  • Sweeney, B. W., J. K. Jackson, J. D. Newbold & D. H. Funk, 2001. Climate change and the life histories and biogeography of aquatic insects in eastern North America. In Firth, P. & S. P. Fisher (eds), Global Climate Change and Freshwater Ecosystems. Springer-Verlag, Berlin.

    Google Scholar 

  • Tierno de Figueroa, J. M., M. J. López-Rodríguez, A. Lorenz, W. Graf, A. Schmidt-Kloiber & D. Hering, 2010. Vulnerable taxa of European Plecoptera (Insecta) in the context of climate change. Biodiversity Conservation 19: 1269–1277.

    Article  Google Scholar 

  • Tilman, D., 2001. Functional diversity. In Levin, S. A. (ed.), Encyclopedia of Biodiversity. Academic Press, San Diego, CA: 109–120.

    Chapter  Google Scholar 

  • Tobias, W., 1967. Zur Schlüpfrhythmik von Köcherfliegen (Trichoptera). Oikos 18: 55–75.

    Article  Google Scholar 

  • Tobias, W., 1971. Der zeitliche Ablauf des Schlüpfens bei Köcherfliegen (Insecta, Trichoptera). Natur und Museum 101: 155–166.

    Google Scholar 

  • Townsend, C. R. & A. G. Hildrew, 1994. Species traits in relation to a habitat templet for river systems. Freshwater Biology 31: 265–275.

    Article  Google Scholar 

  • Travis, J. M. J., 2003. Climate change and habitat destruction: a deadly anthropogenic cocktail. Proceedings of the Royal Society London B 270: 467–473.

    Article  CAS  Google Scholar 

  • Turner II, B. L., R. E. Kasperson, P. A. Matson, J. J. McCarthy, R. W. Corell, L. Christensen, N. Eckley, J. X. Kasperson, A. Luers, M. L. Martello, C. Polsky, A. Pulsipher & A. Schiller, 2003. A framework for vulnerability analysis in sustainability science. Proceedings of the National Academy of Sciences of the United States of America 100: 8074–8079.

    PubMed  Article  CAS  Google Scholar 

  • Usseglio-Polatera, P., 1991. Représentation graphique synthétique de la signification écologique d’un peuplement. Application aux macroinvertébrés du Rhône à Lyon. Bulletin d’écologie 22: 195–202.

    Google Scholar 

  • Usseglio-Polatera, P., M. Bournaud, P. Richoux & H. Tachet, 2000. Biological and ecological traits of benthic freshwater macroinvertebrates: relationships and definition of groups with similar traits. Freshwater Biology 43: 175–205.

    Article  Google Scholar 

  • Verberk, W. C. E. P., C. G. E. van Noordwijk & A. Hildrew, 2013. Delivering on a promise: integrating species traits to transform descriptive community ecology into a predictive science. Freshwater Science 32: 531–547.

    Article  Google Scholar 

  • Wallace, J. B. & J. R. Webster, 1996. The role of macroinvertebrates in stream ecosystem function. Annual Review of Entomology 41: 115–139.

    PubMed  Article  CAS  Google Scholar 

  • Waringer, J., W. Graf, S. U. Pauls, A. Previšić & M. Kučinić, 2010. A larval key to the Drusinae species of Austria, Germany, Switzerland and the Dinaric Western Balkan. Denisia 29: 323–406.

    Google Scholar 

  • Watanabe, N. C., I. Mori & I. Yoshitaka, 1999. Effect of temperature on the mass emergence of the mayfly, Ephron shigae, in a Japanese river (Ephemeroptera: Polymitarcydae). Freshwater Biology 41: 537–541.

    Article  Google Scholar 

  • Zelinka, M. & P. Marvan, 1961. Zur präzisierung der biologischen klassifikation der reinheit fließender gewässer. Archiv für Hydrobiologie 57: 389–407.

    Google Scholar 

  • Zwick, P., 1992. Stream habitat fragmentation—a threat to biodiversity. Biodiversity and Conservation 1: 80–97.

    Article  Google Scholar 

  • Zwick, P., 2002. The stonefly (Insecta: Plecoptera) seed bank theory: new experimental data. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 28: 1317–1323.

    Google Scholar 

Download references

Acknowledgments

This study was supported by the EU-funded project Refresh (FP7 No 244121). EDB is part of the “Laboratoire d’Excellence” (LABEX) entitled TULIP (ANR-10-LABX-41). Constructive comments from the associate editor of Hydrobiologia Núria Bonada, from Monika Gosh as well as from anonymous referees improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lorenza Conti.

Additional information

Handling editor: Nuria Bonada

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 211 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Conti, L., Schmidt-Kloiber, A., Grenouillet, G. et al. A trait-based approach to assess the vulnerability of European aquatic insects to climate change. Hydrobiologia 721, 297–315 (2014). https://doi.org/10.1007/s10750-013-1690-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1690-7

Keywords

  • Vulnerability
  • Aquatic insects
  • Bio-ecological traits
  • Climate change