Skip to main content

Dynamic carbon budget of a large shallow lake assessed by a mass balance approach

Abstract

To study the role of large and shallow hemiboreal lakes in carbon processing, we calculated a 3-year carbon mass balance for Lake Võrtsjärv (Estonia) based on in situ measurements. This balance took into account hydrological and biogeochemical processes affecting dissolved inorganic (DIC), dissolved organic (DOC) and particulate organic (POC) carbon species. Accumulation varied greatly on a seasonal and yearly basis. The lake exported carbon during most of the year except during spring floods and in late autumn. In-lake processes were responsible for exporting POC and storing DOC while DIC switched between storage and export. The carbon cycle was alternatively dominated in 2009 by biogeochemical processes and in 2011 by riverine fluxes, whereas in 2010 the two process types were of the same magnitude. These results suggest that the role of large shallow lakes like Võrtsjärv in the global C cycle is equally driven by hydrological factors, in particular seasonal water level changes, and by biogeochemical in-lake reactions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  • Andersson, E. & S. Sobek, 2006. Comparison of a mass balance and an ecosystem model approach when evaluating the carbon cycling in a lake ecosystem. Ambio 35: 476–483.

    CAS  PubMed  Article  Google Scholar 

  • Cole, J. J., N. F. Caraco, G. W. Kling & T. K. Kratz, 1994. Carbon dioxide supersaturation in the surface waters of lakes. Science 265: 1568–1570.

    CAS  PubMed  Article  Google Scholar 

  • Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.

    CAS  Article  Google Scholar 

  • del Giorgio, P. A. & P. B. Williams, 2005. The global significance of respiration in aquatic ecosystems: from single cells to the biosphere. In del Giorgio, P. A. & P. J. Williams (eds), Respiration in Aquatic Ecosystems. Oxford University Press, New York: 266–303.

    Chapter  Google Scholar 

  • Demarty, M. & Y. Prairie, 2009. In situ dissolved organic carbon (DOC) release by submerged macrophyte–epiphyte communities in southern Quebec lakes. Canadian Journal of Fisheries and Aquatic Sciences 66: 1522–1531.

    CAS  Article  Google Scholar 

  • Dillon, P. J. & W. A. Molot, 1997. Dissolved organic and inorganic carbon mass balances in central Ontario lakes. Biogeochemistry 36: 29–42.

    CAS  Article  Google Scholar 

  • Downing, J. A., Y. T. Prairie, J. J. Cole, C. M. Duarte, L. J. Tranvik, R. G. Striegl, W. H. McDowell, P. Kortelainen, N. F. Caraco, J. M. Melack & J. J. Middelburg, 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnology & Oceanography 51: 2388–2397.

    Article  Google Scholar 

  • EN 1484, 1992. Water Analysis Guidelines for the Determination of Total Organic Carbon (TOC) and Dissolved Organic Carbon (DOC). Eesti Standardikeskus, Tallinn.

  • Feldmann, T. & H. Mäemets, 2004. Macrophytes. In Haberman, J., E. Piku & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopaedia Publishers, Tallinn: 185–205.

    Google Scholar 

  • Feldmann, T. & P. Nõges, 2007. Factors controlling macrophyte distribution in large shallow Lake Võrtsjärv. Aquatic Botany 87: 15–21.

    Article  Google Scholar 

  • Finlay, K., P. R. Leavitt, A. Patoine & B. Wissel, 2010. Magnitudes and controls of organic and inorganic carbon flux through a chain of hardwater lakes on the northern Great Plains. Limnology & Oceanography 55: 1551–1564.

    CAS  Article  Google Scholar 

  • George, D. G., S. C. Maberly & D. P. Hewitt, 2004. The influence of the North Atlantic Oscillation on the physical, chemical and biological characteristics of four lakes in the English Lake District. Freshwater Biology 49: 760–774.

    Article  Google Scholar 

  • Heinsalu, A., H. Luup, T. Alliksaar, P. Nõges & T. Nõges, 2008. Water level changes in a large shallow lake as reflected by the plankton: periphyton-ratio of sedimentary diatoms. Hydrobiologia 599: 23–30.

    Article  Google Scholar 

  • ISO 8245, 1987. Water Quality Guidelines for the Determination of Total Organic Carbon (TOC). International Organization for Standardization, Switzerland.

  • Jaani, A., 1973. Hüdroloogia. In Timm, T. (ed.), Võrtsjärv. Valgus, Tallinn: 37–60.

    Google Scholar 

  • Järvet, A., 2004a. Influence of hydrological factors and human impact on the ecological state of shallow Lake Võrtsjärv in Estonia. Dissertationes Geographicae Universitatis Tartuensis No 19, Tartu University Press. Tartu.

  • Järvet, A., R. Karukäpp & I. Arold, 2004. Location and physico-geographical conditions of the catchment area. In Haberman, J., E. Pihu & A. Raukas (eds), Lake Võrtsjärv. Estonian Encyclopedia Publishers, Tallinn: 11–28.

    Google Scholar 

  • Kraatz, C. & P. Wochnik, 1998. Dr. Lange TOC Cuvette Test Conforms to European Standard. Application Report Ch. No. 60. Dr. Bruno Lange GmbH & Co, Düsseldorf.

  • Laas, A., P. Nõges, T. Kõiv & T. Nõges, 2012. High-frequency metabolism study in a large and shallow temperate lake reveals seasonal switching between net autotrophy and net heterotrophy. Hydrobiologia 694: 57–74.

    CAS  Article  Google Scholar 

  • McGarvey, H., D. Fountain & R. Turner, 2001. Pollen dispersal and nutrient input into aquatic ecosystems. In Rotorua Lakes 2001 Symposium, August 2001, Proceedings and Report. Lakes Water Quality Society.

  • Nielsen, G. Æ., & A. M. Bresta (eds), 1984. Guidelines for the measurement of phytoplankton primary production. Baltic Marine Biologists.

  • Nõges, P. & A. Järvet, 1995. Water level control over light conditions in shallow lakes. Report Series in Geophysics, University of Helsinki 32: 81–92.

  • Nõges, P., T. Nõges, 2013. Weak trends in ice phenology of Estonian large lakes despite significant warming trends. Hydrobiologia. doi:10.1007/s10750-013-1572-z.

  • Nõges, T. & P. Nõges, 1999. The effect of extreme water level decrease on hydrochemistry and phytoplankton in a shallow eutrophic lake. Hydrobiologia 409: 277–283.

    Article  Google Scholar 

  • Nõges, P. & L. Tuvikene, 2012. Spatial and annual variability of environmental and phytoplankton indicators in Lake Võrtsjärv: implications for water quality monitoring. Estonian Journal of Ecology 61: 227–246.

    Article  Google Scholar 

  • Nõges, T., P. Nõges, J. Haberman, V. Kisand, K. Kangur, A. Kangur & A. Järvalt, 1998. Food web structure in shallow eutrophic Lake Võrtsjärv (Estonia). Limnologica 28: 115–128.

    Google Scholar 

  • Nõges, P., L. Tuvikene, T. Nõges & A. Kisand, 1999. Primary production, sedimentation and resuspension in large shallow Lake Võrtsjärv. Hydrobiologia 61: 168–182.

    Google Scholar 

  • Nõges, T., P. Nõges & R. Laugaste, 2003. Water level as the mediator between climate change and phytoplankton composition in a large shallow temperate lake. Hydrobiologia 506: 257–263.

    Article  Google Scholar 

  • Nõges, P., T. Nõges & A. Laas, 2010a. Climate-related changes of phytoplankton seasonality in large shallow Lake Võrtsjärv, Estonia. Aquatic Ecosystem Health & Management 13: 154–163.

    Article  CAS  Google Scholar 

  • Nõges, T., H. Luup & T. Feldmann, 2010b. Primary production of aquatic macrophytes and their epiphytes in two shallow lakes (Peipsi and Võrtsjärv) in Estonia. Aquatic Ecology 44: 83–92.

    Article  CAS  Google Scholar 

  • Nõges, T., H. Arst, A. Laas, T. Kauer, P. Nõges & K. Toming, 2011. Reconstructed long-term time series of phytoplankton primary production of a large shallow temperate lake: the basis to assess the carbon balance and its climate sensitivity. Hydrobiologia 667: 205–222.

    Article  CAS  Google Scholar 

  • Pall, P., S. Vilbaste, T. Kõiv, A. Kõrs, K. Käiro, A. Laas, P. Nõges, T. Nõges, K. Piirsoo, L. Toomsalu & M. Viik, 2011. Fluxes of carbon and nutrients through the inflows and outflow of Lake Võrtsjärv, Estonia. Estonian Journal of Ecology 60: 39–53.

    Article  Google Scholar 

  • Piirsoo, K., M. Viik, T. Kõiv, K. Käiro, A. Laas, T. Nõges, P. Pall, A. Selberg, L. Toomsalu & S. Vilbaste, 2012. Characteristics of dissolved organic matter in the inflows and in the outflow of Lake Võrtsjärv, Estonia. Journal of Hydrology 475: 306–313.

    CAS  Article  Google Scholar 

  • Sobek, S., G. Algesten, A.-K. Bergström, M. Jansson & L. J. Tranvik, 2003. The catchment and climate regulation of pCO2 in boreal lakes. Global Change Biology 9: 630–641.

    Article  Google Scholar 

  • Sobek, S., L. J. Tranvik, Y. T. Prairie, P. Kortelainen & J. J. Cole, 2007. Patterns and regulation of dissolved organic carbon: an analysis of 7,500 widely distributed lakes. Limnology & Oceanography 52: 1208–1219.

    CAS  Article  Google Scholar 

  • Staehr, P. A., J. M. Testa, W. M. Kemp, J. J. Cole, K. Sand-Jensen & S. V. Smith, 2012. The metabolism of aquatic ecosystems: history, applications, and future challenges. Aquatic Sciences 74: 15–29.

    Article  Google Scholar 

  • Stets, E. G., R. G. Striegl, G. R. Aiken, D. O. Rosenberry & T. C. Winter, 2009. Hydrologic support of carbon dioxide flux revealed by whole-lake carbon budgets. Journal of Geophysical Research 114: G01008.

    Article  CAS  Google Scholar 

  • Tranvik, L. J., 1992. Allochthonous dissolved organic matter as an energy source for pelagic bacteria and the concept of the microbial loop. Hydrobiologia 229: 107–114.

    CAS  Article  Google Scholar 

  • Tranvik, L. J., et al., 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology & Oceanography 54: 2298–2314.

    CAS  Article  Google Scholar 

  • Tremblay, A., L. Varfalvy, C. Roehm & M. Garneau (eds), 2005. Greenhouse Gas Emissions: Fluxes and Processes Hydroelectric Reservoirs and Natural Environments. Springer, Germany: 732 pp.

    Google Scholar 

  • Vis, C., C. Hudon & R. Carignan, 2006. Influence of the vertical structure of macrophyte stands on epiphyte community metabolism. Canadian Journal of Fisheries and Aquatic Sciences 63: 1014–1026.

    CAS  Article  Google Scholar 

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, London.

    Google Scholar 

  • Zingel, P. & T. Nõges, 2010. Seasonal and annual population dynamics of ciliates in shallow eutrophic lake. Fundamental and Applied Limnology 176: 133–143.

    Article  Google Scholar 

Download references

Acknowledgments

The study was supported by the Estonian Ministry of Education (project SF0170011s08), by the Estonian Science Foundation through grants, ETF9102, JD109 ETF8486 and ETF8729 and by 7th EU Framework Programme, Theme 6 (Environment including Climate Change) project REFRESH (Adaptive strategies to Mitigate the Impacts of Climate Change on European Freshwater Ecosystems, Contract No. 244121). The Estonian Ministry of Environment supported data collection in the state monitoring programme. We gratefully acknowledge the water level data contributed by the Estonian Institute of Hydrology and Meteorology. We are thankful to two anonymous reviewers for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Cremona.

Additional information

Guest editors: D. Straile, D. Gerdeaux, D. M. Livingstone, P. Nõges, F. Peeters & K.-O. Rothhaupt / European Large Lakes III. Large lakes under changing environmental conditions

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cremona, F., Kõiv, T., Nõges, P. et al. Dynamic carbon budget of a large shallow lake assessed by a mass balance approach. Hydrobiologia 731, 109–123 (2014). https://doi.org/10.1007/s10750-013-1686-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1686-3

Keywords

  • Mass balance
  • Carbon budget
  • Accumulation
  • Shallow lake
  • DIC
  • CO2
  • Methane
  • Macrophytes