, Volume 722, Issue 1, pp 75–91 | Cite as

Zooplankton (Cladocera) species turnover and long-term decline of Daphnia in two high mountain lakes in the Austrian Alps

  • Liisa Nevalainen
  • Mirva Ketola
  • Jennifer B. Korosi
  • Marina Manca
  • Rainer Kurmayer
  • Karin A. Koinig
  • Roland Psenner
  • Tomi P. Luoto
Primary Research Paper


We investigated long-term succession of sedimentary cladoceran assemblages in two morphologically divergent mountain lakes by utilizing sediment traps and previously available sediment data. We aimed to detect lake-specific changes in pelagic communities potentially attributable to climate warming under the presumption that lakes and biotic communities may respond individually to the same regional climatic forcing. Both lakes showed a similar community turnover, as Daphnia was first replaced by Chydorus cf. sphaericus and during the twentieth century by the latest colonizer Bosmina. The community succession was similar among the lakes and consistent with the regional temperature increase, although the timing of community shift, the magnitude of change, and taxa in question differed. Decline of Daphnia mismatched with historical fish stockings, but the eventual extirpation of Daphnia in one of the lakes corresponded to the start of fish introductions. We propose that the observed shifts were mainly governed by increasing temperatures and its limnoecological consequences (e.g., deeper mixing). We suggest that Bosmina distribution may be extending to lakes at higher altitudes as a response to climate warming, and that it may replace Daphnia as the key component of pelagic alpine food webs by coping in interspecific resource competition under changed limnological regimes.


Alpine lakes Cladocera Climate warming Community dynamics Environmental change 



This study was funded in part by the DETECTIVE (DEcadal deTECTion of biodIVErsity in alpine lakes) project through the Alpine research program of the Austrian Academy of Sciences, Kone Foundation (LN, EGGER project), and the Academy of Finland (TPL, ILMAVEIVI project, grant # 250343). Johann Knoll is thanked for his help with the fieldwork and preparing the Cladocera samples, and Hannes Höllerer and Ulrike Koll for their assistance with the fieldwork. Dr. Hubert Gassner (BAW Scharfling) is sincerely thanked for providing fish stocking data. The Alpine temperature data were provided by the HISTALP project database at The authors thank the anonymous reviewers for providing comments that helped us improve this manuscript.


  1. Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. A. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.PubMedCrossRefGoogle Scholar
  2. Auer, I., R. Böhm, A. Jurkovic, W. Lipa, A. Orlik, R. Potzmann, W. Schöner, M. Ungersböck, C. Matulla, K. Briffa, P. D. Jones, D. Efthymiadis, M. Brunetti, T. Nanni, M. Maugeri, L. Mercalli, O. Mestre, J.-M. Moisselin, M. Begert, G. Müller-Westermeier, V. Kveton, O. Bochnicek, P. Stastny, M. Lapin, S. Szalai, T. Szentimrey, T. Cegnar, M. Dolinar, M. Gajic-Capka, K. Zaninovic, Z. Majstorovic & E. Nieplova, 2007. HISTALP – Historical instrumental climatological surface time series of the greater Alpine region 1760–2003. International Journal of Climatol 27: 17–46.CrossRefGoogle Scholar
  3. Berger, S. A., S. Diehl, H. Stibor, G. Trommer, M. Ruhenstroth, A. Wild, A. Weigert, J. G. Jager & M. Striebel, 2007. Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia 150: 643–665.PubMedCrossRefGoogle Scholar
  4. Bigler, C., O. Heiri, R. Krskova, A. F. Lotter & M. Sturm, 2006. Distribution of diatoms, chironomids and cladocera in surface sediments of thirty mountain lakes in south-eastern Switzerland. Aquatic Sciences 68: 154–171.CrossRefGoogle Scholar
  5. Brancelj, A., M. Kernan, E. Jeppesen, M. Rautio, M. Manca, M. Šiško, M. Alonso & E. Stuchlík, 2009. Cladocera remains from the sediment of remote cold lakes: a study of 294 lakes across Europe. Advances in Limnology 62: 269–294.Google Scholar
  6. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, composition of plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  7. Cammarano, P. & M. Manca, 1997. Studies on zooplankton in two acidified mountain lakes in the Alps. Hydrobiologia 356: 97–109.CrossRefGoogle Scholar
  8. Catalan, J., M. G. Barbieri, F. Bartumeus, P. Bitušík, I. Botev, A. Brancelj, D. Cogălniceanu, M. Manca, A. Marchetto, N. Ognjanova-Rumenova, S. Pla, M. Rieradevall, S. Sorvari, E. Štefková, E. Stuchlík & M. Ventura, 2009. Ecological thresholds in European alpine lakes. Freshwater Biology 54: 2494–2517.CrossRefGoogle Scholar
  9. Catalan, J., S. Pla-Rabés, A. Wolfe, J. Smol, K. Rühland, N. J. Anderson, J. Kopáček, E. Stuchlík, R. Schmidt, K. Koinig, L. Camarero, R. Flower, O. Heiri, C. Kamenik & A. Korhola, 2012. Global change revealed by palaeolimnological records from remote lakes: a review. Journal of Paleolimnology 49: 513–535.CrossRefGoogle Scholar
  10. Chételat, J. & M. Amyot, 2009. Elevated methylmercury in High Arctic Daphnia and the role of productivity in controlling their distribution. Global Change Biology 15: 706–718.CrossRefGoogle Scholar
  11. Davidson, T. A., C. D. Sayer, M. Perrow, M. Bramm & E. Jeppesen, 2010. The simultaneous inference of zooplanktivorous fish and macrophyte density from sub-fossil cladoceran assemblages: a multivariate regression tree approach. Freshwater Biology 55: 546–564.CrossRefGoogle Scholar
  12. de Bernardi, R., G. Giussani & M. Manca, 1987. Cladocera: predators and prey. Hydrobiologia 145: 225–243.CrossRefGoogle Scholar
  13. de Bernardi, R., G. Giussani, M. Manca & D. Ruggiu, 1990. Trophic status and the pelagic system in Lago Maggiore. Hydrobiologia 191: 1–8.CrossRefGoogle Scholar
  14. de Eyto, E., 2001. Chydorus sphaericus as a biological indicator of water quality in lakes. Verhandlungen des Internationalen Verein Limnologie 27: 3358–3362.Google Scholar
  15. DeMott, W. R. & W. C. Kerfoot, 1982. Competition among cladocerans: nature of the interaction between Bosmina and Daphnia. Ecology 63: 1949–1966.CrossRefGoogle Scholar
  16. DeSellas, A. M., A. M. Paterson, J. N. Sweetman & J. P. Smol, 2011. Assessing the effects of multiple environmental stressors on zooplankton assemblages in Boreal Shield lakes since pre-industrial times. Journal of Limnology 70: 41–56.CrossRefGoogle Scholar
  17. Fischer, J. M., M. Olson, C. E. Williamson, J. C. Everhart, P. H. Hogan, J. A. Mack, K. C. Rose, J. E. Saros, J. R. Stone & R. D. Vinebrooke, 2011. Implications of climate change for Daphnia in alpine lakes: predictions from long-term dynamics, spatial distribution, and a short-term experiment. Hydrobiologia 676: 263–277.CrossRefGoogle Scholar
  18. Flössner, D., 1972. Krebstiere, Crustacea. Kiemen- und Blatfüsser, Branchiopoda, Fischläuse, Branchiura. Tierwelt Deutschland 60: 1–501.Google Scholar
  19. Flössner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden.Google Scholar
  20. Gąsiorowski, M. & E. Sienkiewicz, 2010. 20th Century acidification and warming as recorded in two alpine lakes in the Tatra Mountains (South Poland, Europe). Science of the Total Environment 408: 1091–1101.PubMedCrossRefGoogle Scholar
  21. George, D. G., 2000. The impact of regional-scale changes in the weather on the long-term dynamics of Eudiaptomus and Daphnia in Estwaite Water, Cumbria. Freshwater Biology 45: 111–121.CrossRefGoogle Scholar
  22. Gillooly, J. F. & S. I. Dodson, 2000. Latitudinal patterns in the size distribution and seasonal dynamics of new world, freshwater cladocerans. Limnology and Oceanography 45: 22–30.CrossRefGoogle Scholar
  23. Guilizzoni, P., S. N. Levine, M. Manca, A. Marchetto, A. Lami, W. Ambrosetti, A. Brauer, S. Gerli, E. A. Carrara, A. Rolla, L. Guzzella & D. A. L. Vignati, 2012. Ecological effects of multiple stressors on a deep lake (Lago Maggiore, Italy) integrating neo and palaeolimnological approaches. Journal of Limnology 71: 1–22.CrossRefGoogle Scholar
  24. Hammer, Ø., D. A. T. Harper & P. D. Ryan, 2001. PAST: Paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1): 9 pp.
  25. Ivy-Ochs, S., H. Kerschner, M. Maisch, M. Christl, P. W. Kubik & C. Sclüchter, 2009. Latest pleistocene and Holocene glacier variations in the European Alps. Quaternary Science Reviews 28: 2137–2149.CrossRefGoogle Scholar
  26. Jeppesen, E., P. Nöges, T. A. Davidson, J. Haberman, T. Nöges, K. Blank, T. L. Lauridsen, M. Sodergaard, C. Sayer, R. Laugaste, L. S. Johansson, R. Bjerring & S. L. Amsinck, 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279–297.CrossRefGoogle Scholar
  27. Jeziorski, A., N. D. Yan, A. M. Paterson, A. M. DeSellas, M. A. Turner, D. S. Jeffries, B. Keller, R. C. Weeber, D. K. McNicol, M. E. Palmer, K. McIver, K. Arsenau, B. K. Ginn, B. F. Cumming & J. P. Smol, 2008. The widespread threat of calcium decline in fresh waters. Science 322: 1374–1377.PubMedCrossRefGoogle Scholar
  28. Jeziorski, A., A. M. Paterson & J. P. Smol, 2012. Crustacean zooplankton sedimentary remains from calcium-poor lakes: complex responses to threshold concentrations. Aquatic Sciences 74: 121–131.CrossRefGoogle Scholar
  29. Kamenik, C., K. Koinig, R. Schmidt, P. G. Appleby, J. A. Dearing, A. Lami, R. Thompson & R. Psenner, 2000. Eight hundred years of environmental changes in a high Alpine lake (Gössenköllesee, Tyrol) inferred from sediment records. Journal of Paleolimnology 59: 43–52.Google Scholar
  30. Kamenik, C., K. Szeroczyńska & R. Schmidt, 2007. Relationship among recent Alpine Cladocera remains and their environment: implications for climate-change studies. Hydrobiologia 594: 33–46.CrossRefGoogle Scholar
  31. Koinig, K. A., C. Kamenik, R. Schmidt, A. Agustí-Panareda, P. Appleby, A. Lami, M. Prazakova, N. Rose, O. A. Schnell, R. Tessadri, R. Thompson & R. Psenner, 2002. Environmental changes in an alpine lake (Gossenköllesee, Austria) over the last two centuries – the influence of air temperature on biological parameters. Journal of Paleolimnology 28: 147–160.CrossRefGoogle Scholar
  32. Korosi, J. B. & J. P. Smol, 2012. Examining the effects of climate change, acidic deposition, and copper sulphate poisoning on long-term changes in cladoceran assemblages. Aquatic Sciences 74: 781–792.CrossRefGoogle Scholar
  33. Korosi, J. B., A. M. Paterson, A. M. DeSellas & J. P. Smol, 2010. Comparison of present-day and pre-industrial changes in Bosmina and Daphnia size structure from soft-water Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences 67: 754–762.CrossRefGoogle Scholar
  34. Korosi, J. B., S. Burke, J. R. Thienpont & J. P. Smol, 2012. Anomalous rise in algal production linked to lakewater calcium decline through food web interactions. Proceedings of the Royal Society of London B 279: 1210–1217.CrossRefGoogle Scholar
  35. Kurek, J., J. B. Korosi, A. Jeziorski & J. P. Smol, 2010. Establishing reliable minimum count sizes for cladoceran subfossils sampled from lake sediments. Journal of Paleolimnology 44: 603–612.CrossRefGoogle Scholar
  36. Lotter, A. F., H. J. B. Birks, W. Hofmann & A. Marchetto, 1997. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. Journal of Paleolimnology 18: 395–420.CrossRefGoogle Scholar
  37. Luoto, T. P. & L. Nevalainen, 2013a. Climate-driven limnological changes determine ecological thresholds in an Alpine lake. Aquatic Biology 18: 47–58.CrossRefGoogle Scholar
  38. Luoto, T. P. & L. Nevalainen, 2013b. Climate change impacts on zooplankton and benthic communities in Lake Unterer Giglachsee (Niedere Tauern Alps, Austria). International Review of Hydrobiology 98: 80–88.CrossRefGoogle Scholar
  39. Manca, M. & M. Armiraglio, 2002. Zooplankton of 15 lakes in the Southern Central Alps: comparison of recent and past (pre-ca 1850 AD) communities. Journal of Limnology 61: 225–231.CrossRefGoogle Scholar
  40. Manca, M. & P. Comoli, 1995. Temporal variations of fossil Cladocera in the sediments of Lake Orta (N. Italy) over the last 400 years. Journal of Paleolimnology 14: 113–122.CrossRefGoogle Scholar
  41. Manca, M., B. Torretta, P. Comoli, S. L. Amsinck & E. Jeppesen, 2007. Major changes in trophic dynamics in large, deep, sub-alpine Lake Maggiore from 1940s to 2002: a high resolution comparative palaeo-neolimnological study. Freshwater Biology 52: 2256–2269.CrossRefGoogle Scholar
  42. Nevalainen, L., 2010. Evaluation of microcrustacean (Cladocera, Chydoridae) biodiversity based on sweep net and surface sediment samples. Écoscience 17: 356–364.CrossRefGoogle Scholar
  43. Nevalainen, L., 2011. Intra-lake heterogeneity of sedimentary cladoceran (Crustacea) assemblages forced by local hydrology. Hydrobiologia 676: 9–22.CrossRefGoogle Scholar
  44. Nevalainen, L. & T. P. Luoto, 2012. Faunal (Chironomidae, Cladocera) responses to post-Little Ice Age climate warming in the high Austrian Alps. Journal of Paleolimnology 48: 711–724.CrossRefGoogle Scholar
  45. Nevalainen, L., T. P. Luoto, S. Levine & M. Manca, 2011a. Modern and pre-Industrial Age distributions of Cladocera in Italian and Swiss Alpine lakes. Hydrobiologia 676: 173–185.CrossRefGoogle Scholar
  46. Nevalainen, L., T. P. Luoto & K. Sarmaja-Korjonen, 2011b. Sedimentary Cladocera as indicators of past water-level changes in shallow northern lakes. Quaternary Research 75: 430–437.CrossRefGoogle Scholar
  47. Nykänen, M., T. Malinen, K. Vakkilainen, M. Liukkonen & T. Kairesalo, 2010. Cladoceran community responses to biomanipulation and re-oligotrophication in Lake Vesijärvi, Finland, as inferred from remains in annually laminated sediment. Freshwater Biology 55: 1164–1181.CrossRefGoogle Scholar
  48. Parker, B. R., R. D. Vinebrooke & D. W. Schindler, 2008. Recent climate extremes alter alpine lake ecosystems. Proceedings of the National Academy of Sciences United States of America 105: 12927–12931.CrossRefGoogle Scholar
  49. Paul, R. J., A. Mertenskötter, O. Pinkhaus, R. Pirow, U. Gigengack, I. Buchen, M. Koch, W. Horn & B. Zeis, 2012. Seasonal and interannual changes in water temperature affect the genetic structure of a Daphnia assemblage (D. longispina complex) through genotype-specific thermal tolerances. Limnology and Oceanography 57: 619–933.CrossRefGoogle Scholar
  50. Persson, J., M. T. Brett, T. Vrede & J. L. Ravet, 2007. Food quantity and quality regulation of trophic transfer between primary producers and a keystone grazer (Daphnia) in pelagic freshwater food webs. Oikos 116: 1152–1163.CrossRefGoogle Scholar
  51. Rautio, M., 2007. Cladocera. In Elias, S. A. (ed.), Encyclopedia of Quaternary Science. Elsevier, Amsterdam: 2031–2039.Google Scholar
  52. Rautio, M. & B. Tartarotti, 2010. UV radiation and freshwater zooplankton: damage, protection and recovery. Freshwater Reviews 3: 105–131.PubMedGoogle Scholar
  53. Rautio, M., S. Bonilla & W. F. Vincent, 2009. UV photoprotectants in arctic zooplankton. Aquatic Biology 7: 93–105.CrossRefGoogle Scholar
  54. Schindler, D. W., B. Parker & M. P. Stainton, 1996a. Consequences of climate warming and lake acidification for UV-B penetration in North American boreal lakes. Nature 379: 705–708.CrossRefGoogle Scholar
  55. Schindler, D. W., S. E. Bayley, B. R. Parker, K. G. Beaty, D. R. Cruikshank, E. J. Fee, E. U. Schindler & M. P. Stainton, 1996b. The effects of climatic warming on the properties of boreal lakes and streams at the Experimental Lakes Area, northwestern Ontario. Limnology and Oceanography 4: 1004–1017.CrossRefGoogle Scholar
  56. Schmidt, R., M. Roth, R. Tessadri & K. Weckström, 2008. Disentangling late-Holocene climate and land use impacts on an Austrian alpine lake using seasonal temperature anomalies, ice-cover, sedimentology, and pollen tracers. Journal of Paleolimnology 40: 453–469.CrossRefGoogle Scholar
  57. Schultz, K. L. & R. W. Sterner, 1999. Phytoplankton phosphorus limitation and food quality for Bosmina. Limnology and Oceanography 44: 1549–1556.CrossRefGoogle Scholar
  58. Smol, J. P., 2008. Pollution of lakes and rivers: a paleoenvironmental perspective. Wiley-Blackwell Publishing, Oxford.Google Scholar
  59. Sommaruga, R., R. Psenner, E. Schafferer, K. A. Koinig & S. Sommaruga-Wögrath, 1999. Dissolved organic carbon concentrations and phytoplankton biomass in high-mountain lakes of the Austrian Alps: potential effects of climatic warming on UV underwater attenuation. Arctic Antarctic Alpine Research 31: 247–253.CrossRefGoogle Scholar
  60. Stone, J. R. & S. C. Fritz, 2004. Three-dimensional modeling of lacustrine diatom habitat areas: improving paleolimnological interpretation of planktic: benthic ratios. Limnology and Oceanography 49: 1540–1548.CrossRefGoogle Scholar
  61. Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of Subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie.Google Scholar
  62. ter Braak, C.J.F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca.Google Scholar
  63. Thompson, R., C. Kamenik & R. Schmidt, 2005. Ultra-sensitive Alpine lakes and climate change. Journal of Limnology 64: 139–152.CrossRefGoogle Scholar
  64. Vijverberg, J. & M. Boersma, 1997. Long-term dynamics of small-bodied and large-bodied cladocerans during the eutrophication of a shallow reservoir, with special attention for Chydorus sphaericus. Hydrobiologia 360: 233–242.CrossRefGoogle Scholar
  65. Visconti, A., M. Manca & R. de Bernardi, 2008. Eutrophication-like response to climate warming: an analysis of Lago Maggiore (N. Italy) zooplankton in contrasting years. Journal of Limnology 67: 87–92.CrossRefGoogle Scholar
  66. Williamson, C. E., O. G. Olson, S. E. Lott, N. D. Walker, D. R. Engstrom & B. R. Hargreaves, 2001. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology 82: 1748–1760.CrossRefGoogle Scholar
  67. Winder, M. & D. E. Schindler, 2004. Climate change uncouples trophic interactions in an aquatic ecosystem. Ecology 85: 2100–2106.CrossRefGoogle Scholar
  68. Winder, M., M. T. Monaghan & P. Spaak, 2001. Have human impacts changed Alpine zooplankton diversity over the past 100 years. Arctic Antarctic Alpine Research 33: 467–475.CrossRefGoogle Scholar
  69. Wolfe, A. P., S. J. Baron & R. J. Cornett, 2001. Anthropogenic nitrogen deposition induces rapid ecological changes in alpine lakes of the Colorado Front Range (USA). Journal of Paleolimnology 25: 1–7.CrossRefGoogle Scholar
  70. Zick, D., H. Gassner, M. Rinnerthaler, P. Jäger & R. A. Patzner, 2007. Application of population size structure indices to Arctic char Salvelinus alpine (L.) in Alpine lakes in Austria. Ecology of Freshwater Fish 16: 54–63.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Liisa Nevalainen
    • 1
    • 2
  • Mirva Ketola
    • 1
  • Jennifer B. Korosi
    • 3
  • Marina Manca
    • 4
  • Rainer Kurmayer
    • 2
  • Karin A. Koinig
    • 5
  • Roland Psenner
    • 5
  • Tomi P. Luoto
    • 2
    • 6
  1. 1.Department of Environmental SciencesUniversity of HelsinkiLahtiFinland
  2. 2.Research Institute for LimnologyUniversity of InnsbruckMondseeAustria
  3. 3.Department of BiologyUniversity of OttawaOttawaCanada
  4. 4.Institute of Ecosystem StudyNational Research Council of ItalyVerbaniaItaly
  5. 5.Institute of EcologyUniversity of InnsbruckInnsbruckAustria
  6. 6.Department of Geosciences and GeographyUniversity of HelsinkiHelsinkiFinland

Personalised recommendations