, Volume 722, Issue 1, pp 31–43 | Cite as

Quantifying temporal variability in the metacommunity structure of stream fishes: the influence of non-native species and environmental drivers

  • T. Erős
  • P. Sály
  • P. Takács
  • C. L. Higgins
  • P. Bíró
  • D. Schmera
Primary Research Paper


Most studies characterize metacommunities based on a single snapshot of the spatial structure, which may be inadequate for taxa with high migratory behavior (e.g., fish). Here, we applied elements of metacommunity structure to examine variations in the spatial distributions of stream fishes over time and to explore possible structuring mechanisms. Although the major environmental gradients influencing species distributions remained largely the same in time, the best-fit pattern of metacommunity structure varied according to sampling occasion and whether or not we included non-native species in the analyses. Quasi-Clementsian and Clementsian structures were the predominant best-fit structures, indicating the importance of species turnover among sites and the existence of more or less discrete community boundaries. The environmental gradient most correlated with metacommunity structure was defined by altitude, area of artificial ponds in the catchment, and dissolved oxygen content. Our results suggest that the best-fit metacommunity structure of the native species can change in time in this catchment due to seasonal changes in distribution patterns. However, the distribution of non-native species throughout the landscape homogenizes the temporal variability in metacommunity structure of native species. Further studies are necessary from other regions to examine best-fit metacommunity structures of stream fishes within relatively short environmental gradients.


Metacommunities Elements of metacommunity structure Fish assemblages Temporal variation Non-native species Homogenization 

Supplementary material

10750_2013_1673_MOESM1_ESM.docx (43 kb)
Supplementary material 1 (DOCX 44 kb)


  1. Aarts, B. G. W. & P. H. Nienhuis, 2003. Fish zonations and guilds as the basis for assessment of ecological integrity of large rivers. Developments in Hydrobiology 171: 157–178.CrossRefGoogle Scholar
  2. Baselga, A., 2010. Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography 19: 134–143.CrossRefGoogle Scholar
  3. Blanchet, F. G., P. Legendre & D. Borcard, 2008. Forward selection of explanatory variables. Ecology 89: 2623–2632.PubMedCrossRefGoogle Scholar
  4. Bloch, C. P., C. L. Higgins & M. R. Willig, 2007. Effects of large scale disturbance on metacommunity structure of terrestrial gastropods: temporal trends in nestedness. Oikos 116: 395–406.CrossRefGoogle Scholar
  5. Clements, F. E., 1916. Plant Succession: An Analysis of the Development of Vegetation. Carnegie Institute of Washington, Washington, DC.CrossRefGoogle Scholar
  6. Diamond, J. M., 1975. Assembly of species communities. In Cody, M. L. & J. M. Diamond (eds), Ecology and Evolution of Communities. Harvard University Press, Cambridge.Google Scholar
  7. Dray, S., P. Legendre & G. Blanchet, 2009. packfor: Forward Selection with Permutation (Canoco p.46). R package version 0.0-7/r58.Google Scholar
  8. Erős, T., 2007. Partitioning the diversity of riverine fish: the roles of habitat types and non-native species. Freshwater Biology 52: 1400–1415.CrossRefGoogle Scholar
  9. Erős, T. & G. D. Grossman, 2005. Fish biodiversity in two Hungarian streams—a landscape based approach. Archiv für Hydrobiologie 162: 53–71.CrossRefGoogle Scholar
  10. Erős, T., P. Sály, P. Takács, A. Specziár & P. Bíró, 2012. Temporal variability in the spatial and environmental determinants of functional metacommunity organization—stream fish in a human modified landscape. Freshwater Biology 57: 1914–1928.CrossRefGoogle Scholar
  11. Fridley, J. D., J. J. Stachowicz, S. Naeem, D. F. Sax, E. W. Seabloom, M. D. Smith, T. J. Stohlgren, D. Tilman & B. Von Holle, 2007. The invasion paradox: reconciling pattern and process in species invasions. Ecology 88: 3–17.PubMedCrossRefGoogle Scholar
  12. Gleason, H. A., 1926. The individualistic concept of the plant association. Bulletin of the Torrey Botanical Club 53: 7–26.CrossRefGoogle Scholar
  13. Grossman, G. D., R. E. Ratajczak, M. D. Farr, C. M. Wagner & J. D. Petty, 2010. Why there are fewer fish upstream. In Gido, K. B. & D. A. Jackson (eds) Community Ecology of Stream Fishes: Concepts, Approaches, and Techniques. American Fisheries Society, Symposium 73, Bethesda: 63–82.Google Scholar
  14. Heino, J., 2005. Metacommunity patterns of highly diverse stream midges: gradients, chequerboards, and nestedness, or is there only randomness? Ecological Entomology 30: 590–599.CrossRefGoogle Scholar
  15. Heino, J., 2011. A macroecological perspective of diversity patterns in the freshwater realm. Freshwater Biology 56: 1703–1722.CrossRefGoogle Scholar
  16. Heino, J., T. Muotka, H. Mykrä, R. Paavola, H. Hämäläinen & E. Koskenniemi, 2003. Defining macroinvertebrate assemblage types of headwater streams: implications for bioassessment and conservation. Ecological Applications 13: 842–852.CrossRefGoogle Scholar
  17. Hermoso, V. & S. Linke, 2012. Discrete vs. continuum approaches to the assessment of the ecological status in Iberian rivers, does the method matter? Ecological Indicators 18: 477–484.CrossRefGoogle Scholar
  18. Hoeinghaus, D. J., K. O. Winemiller & J. S. Birnbaum, 2007. Local and regional determinants of stream fish assemblage structure: inferences based on taxonomic vs. functional groups. Journal of Biogeography 34: 324–338.CrossRefGoogle Scholar
  19. Holyoak, M., M. A. Leibold & R. D. Holt (eds), 2005. Metacommunities: Spatial Dynamics and Ecological Communities. University of Chicago Press, Chicago: 513 pp.Google Scholar
  20. Hoverman, J. T., C. J. Davis, E. E. Werner, D. K. Skelly, R. A. Relyea & K. L. Yurewicz, 2011. Environmental gradients and the structure of freshwater snail communities. Ecography 34: 1049–1058.CrossRefGoogle Scholar
  21. Hughes, R. M. & D. V. Peck, 2008. Acquiring data for large aquatic resource surveys: the art of compromise among science, logistics, and reality. Journal of the North American Benthological Society 27: 837–859.CrossRefGoogle Scholar
  22. Ibarra, A. A., Y.-S. Park, S. Brosse, Y. Reyjol, P. Lim & P. Lek, 2005. Nested patterns of spatial diversity revealed for fish assemblages in a west European river. Ecology of Freshwater Fish 14: 233–242.CrossRefGoogle Scholar
  23. Jackson, D. A., P. R. Peres-Neto, J. D. Olden, 2001. What controls who is where in freshwater fish communities the roles of biotic, abiotic, and spatial factors. Canadian Journal of Fisheries and Aquatic Sciences 58: 157–170.Google Scholar
  24. Keith, S. A., A. C. Newton, M. D. Morecroft, D. J. Golicher & J. M. Bullock, 2011. Plant metacommunity structure remains unchanged during biodiversity loss in English woodlands. Oikos 120: 302–310.CrossRefGoogle Scholar
  25. Lake, P. S., 2000. Disturbance, patchiness and diversity in streams. Journal of the North American Benthological Society 19: 573–592.CrossRefGoogle Scholar
  26. Lasne, E., B. Bergerot, S. Lek & P. Laffaille, 2007. Fish zonation and indicator species for the evaluation of the ecological status of rivers: example of the Loire basin (France). River Research and Applications 23: 877–890.CrossRefGoogle Scholar
  27. Legendre, P. & L. Legendre, 1998. Numerical Ecology. Elsevier, Amsterdam: xv + 853.Google Scholar
  28. Leibold, M. A. & G. M. Mikkelson, 2002. Coherence, species turnover and boundary clumping: elements of a metacommunity structure. Oikos 97: 237–250.CrossRefGoogle Scholar
  29. Leibold, M. A., M. Holyoak, N. Mouquet, P. Amarasekare, J. M. Chase, M. F. Hoopes, R. D. Holt, J. B. Shurin, R. Law, D. Tilman, M. Loreau & A. Gonzalez, 2004. The metacommunity concept: a framework for multi-scale community ecology. Ecology Letters 7: 601–613.CrossRefGoogle Scholar
  30. López-González, C., S. J. Presley, A. Lozano, R. D. Stevens & C. L. Higgins, 2012. Metacommunity analysis of Mexican bats: environmentally mediated structure in an area of high geographic and environmental complexity. Journal of Biogeography 39: 177–192.CrossRefGoogle Scholar
  31. Magalhães, M. F., D. C. Batalha & M. J. Collares-Pereira, 2002. Gradients in stream fish assemblages across a Mediterranean landscape: contributions of environmental factors and spatial structure. Freshwater Biology 47: 1015–1031.CrossRefGoogle Scholar
  32. Malmqvist, B. & P.-O. Hoffsten, 2000. Macroinvertebrate taxonomic richness, community structure and nestedness in Swedish streams. Archiv für Hydrobiologie 150: 29–54.Google Scholar
  33. Matthews, W. J., 1998. Patterns in Freshwater Fish Ecology. Chapman & Hall, New York.CrossRefGoogle Scholar
  34. Morisita, M., 1971. Composition of the I-index. Researches on Population Ecology 13: 1–27.CrossRefGoogle Scholar
  35. Patterson, B. D. & W. Atmar, 1986. Nested subsets and the structure of insular mammalian faunas and archipelagos. Biological Journal of the Linnean Society 28: 65–82.Google Scholar
  36. Presley, S. J. & M. R. Willig, 2010. Bat metacommunity structure on Caribbean islands and the role of endemics. Global Ecology and Biogeography 19: 185–199.CrossRefGoogle Scholar
  37. Presley, S. J., C. L. Higgins, C. López-González & R. D. Stevens, 2009. Elements of metacommunity structure of Paraguayan bats: multiple gradients require analysis of multiple axes of variation. Oecologia 160: 781–793.PubMedCrossRefGoogle Scholar
  38. Presley, S. J., C. L. Higgins & M. R. Willig, 2010. A comprehensive framework for the evaluation of metacommunity structure. Oikos 119: 908–917.CrossRefGoogle Scholar
  39. Quinn, G. P. & M. J. Keough, 2002. Experimental Design and Data Analysis for Biologists. Cambridge University Press, Cambridge: 556 pp.Google Scholar
  40. R Development Core Team, 2012. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna. http://www.r-project.org/.
  41. Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. C. Wissmar, 1988. The role of disturbance in stream ecology. Journal of the North American Benthological Society 7: 433–455.CrossRefGoogle Scholar
  42. Sály, P., T. Erős, P. Takács, A. Specziár, I. Kiss & P. Bíró, 2009. Assemblage level monitoring of stream fishes: the relative efficiency of single-pass vs. double-pass electrofishing. Fisheries Research 99: 226–233.CrossRefGoogle Scholar
  43. Sály, P., P. Takács, I. Kiss, P. Bíró & T. Erős, 2011. The relative influence of spatial context and catchment and site scale environmental factors on stream fish assemblages in a human-modified landscape. Ecology of Freshwater Fish 20: 251–262.CrossRefGoogle Scholar
  44. Schlosser, I. J., 1991. Stream fish ecology—a landscape perspective. Bioscience 41: 704–712.CrossRefGoogle Scholar
  45. Schmutz, S. A., A. Melcher, C. Frangez, G. Haidvogl, U. Beier, J. Böhmer, J. Breine, I. Simoens, N. Caiola, A. de Sostoa, M. T. Ferreira, J. Oliveira, G. Grenouillet, D. Goffaux, J. J. de Leeuw, R. A. A. Noble, N. Roset & T. Virbickas, 2007. Spatially based methods to assess the ecological status of riverine fish assemblages in European ecoregions. Fisheries Management and Ecology 14: 441–452.CrossRefGoogle Scholar
  46. Statzner, B. & B. Higler, 2006. Stream hydraulics as a major determinant of benthic invertebrate zonation patterns. Freshwater Biology 16: 127–139.CrossRefGoogle Scholar
  47. Taylor, C. M., 1997. Fish species richness and incidence patterns in isolated and connected stream pools: effects of pool volume and spatial position. Oecologia 110: 560–566.CrossRefGoogle Scholar
  48. Taylor, C. M. & M. L. Warren, 2001. Dynamics in species composition of stream fish assemblages: environmental variability and nested subsets. Ecology 82: 2320–2330.CrossRefGoogle Scholar
  49. Tilman, D., 1982. Resource Competition and Community Structure. Princeton University Press, Princeton.Google Scholar
  50. Ulrich, W., M. Almeida-Neto & N. J. Gotelli, 2012. A consumer’s guide to nestedness analysis. Oikos 118: 3–17.CrossRefGoogle Scholar
  51. Wang, L., J. Lyons, P. Rasmussen, P. Seelbach, T. Simon, M. Wiley, P. Kanehl, E. Baker, S. Niemela & P. M. Stewart, 2003. Watershed, reach, and riparian influences on stream fish assemblages in the Northern Lakes and Forest Ecoregion, U.S.A. Canadian Journal of Fisheries and Aquatic Sciences 60: 491–505.CrossRefGoogle Scholar
  52. Willig, M. R., S. J. Presley, C. P. Bloch, I. Castro-Arellano, L. M. Cisneros, C. L. Higgins & B. T. Klingbeil, 2011. Tropical metacommunities along elevational gradients: effects of forest type and other environmental factors. Oikos 120: 1497–1508.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • T. Erős
    • 1
  • P. Sály
    • 1
  • P. Takács
    • 1
  • C. L. Higgins
    • 2
  • P. Bíró
    • 1
  • D. Schmera
    • 1
    • 3
  1. 1.Balaton Limnological InstituteMTA Centre for Ecological ResearchTihanyHungary
  2. 2.Department of Biological SciencesTarleton State UniversityStephenvilleUSA
  3. 3.Section of Conservation BiologyUniversity of BaselBaselSwitzerland

Personalised recommendations