Skip to main content
Log in

Feeding efficiency of Chaoborus flavicans (Insecta, Diptera) under turbulent conditions

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Turbulence can affect predator–prey interactions. The effect of turbulence on the feeding efficiency of an ambush predator was tested with laboratory experiments. The experiments were conducted in 100-L aquaria in which ten individuals of fourth instar Chaoborus flavicans larvae were placed as predators. Two prey densities (3 and 10 ind. of Daphnia pulex L−1) and two durations (30 and 120 min) were tested in a nonturbulent treatment and five different turbulence levels [average root-mean-square (RMS) velocities ranging from 0 to 7.3 cm s−1, corresponding dissipation rates from 7.2 × 10−7 to 1.3 × 10−3 m2 s−3]. We hypothesized that the feeding rate of C. flavicans would be enhanced by turbulence due to increasing encounter rates up to a turbulence level above which a disturbance in post-encounter processes would lead to reduced feeding efficiency. However, the results showed no significant increase in the feeding rate of C. flavicans at intermediate turbulence. At high turbulence we found the expected significant negative response in the feeding rate of Chaoborus larvae. The feeding rate declined below the rates at nonturbulent and intermediate turbulence conditions as the average RMS velocity exceeded 3.1 cm s−1 (dissipation rate 9.9 × 10−5 m2 s−3, respectively).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allan, J. D., 1973. Competition and the relative abundances of two cladocerans. Ecology 54: 484–498.

    Article  Google Scholar 

  • Baranyai, E., L. G.-Tóth, A. Vári & Z. G. Homonnay, 2011. The effect of variable turbulent intensities on the distribution of zooplankton in the shallow, large Lake Balaton (Hungary). Knowledge and Management of Aquatic Ecosystems 400: 1–13.

    Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of the plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Cuker, B. E., 1993. Suspended clays alter trophic interactions in the plankton. Ecology 74: 944–953.

    Article  Google Scholar 

  • Dodson, S. I., 1974. Zooplankton competition and predation: an experimental test of the size-efficiency hypothesis. Ecology 55: 605–613.

    Article  Google Scholar 

  • Etemad-Shahidi, A. & J. Imberger, 2001. Anatomy of turbulence in thermally stratified lakes. Limnology and Oceanography 46: 1158–1170.

    Article  CAS  Google Scholar 

  • Fedorenko, A. Y. 1973. Predation interactions between zooplankton and two species of Chaoborus (Diptera, Chaoboridae) in a small coastal lake. MSc Thesis. University of British Columbia: 123 pp.

  • Giguère, L. A., 1986. The estimation of crop evacuation rates in Chaoborus larvae (Diptera: Chaoboridae) using natural prey. Freshwater Biology 16: 557–560.

    Article  Google Scholar 

  • G.-Tóth, L., L. Parpala, C. Balogh, I. Tátrai & E. Baranyai, 2011. Zooplankton community response to enhanced turbulence generated by water-level decrease in Lake Balaton, the largest shallow lake in Central Europe. Limnology and Oceanography 56: 2211–2222.

  • Holling, C. S., 1959. The components of predation as revealed by a study of small mammal predation of the European pine sawly. Canadian Entomologist 91: 293–320.

    Article  Google Scholar 

  • Hongve, D., 1975. On the ecology and distribution of Chaoborus (Chaoboridae, Diptera) from the Upper Romerike District, south-east Norway. Norwegian Journal of Entomology 22: 49–57.

    Google Scholar 

  • Horppila, J. & A. Liljendahl-Nurminen, 2005. Clay-turbid interactions may not cascade – a reminder for lake managers. Restoration Ecology 13: 241–245.

    Article  Google Scholar 

  • Horridge, G. A., 1966. Some recently discovered underwater vibration receptors in invertebrates. In Barnes, H. (ed.), Some Contemporary Studies in Marine Science. Allen and Undwin, London: 395–405.

  • Humphries, D. A. & P. M. Driver, 1970. Protean defence by prey animals. Oecologia 5: 285–302.

    Article  Google Scholar 

  • Jeschke, J. M. & R. Tollrian, 2007. Prey swarming: which predators become confused and why? Animal Behaviour 74: 387–393.

    Article  Google Scholar 

  • Joensuu, L., Z. Pekcan-Hekim, N. Hellén & J. Horppila 2013. Turbulence disturbs vertical refuge use by Chaoborus flavicans larvae and increases their horizontal dispersion. Freshwater Biology. doi:10.1111/fwb.12186.

  • Kankaala, P. & P. Eloranta, 1987. Epizooic ciliates (Vorticella sp.) compete for food with their host Daphnia longispina in a small polyhumic lake. Oecologia 73: 203–206.

    Article  Google Scholar 

  • Kiørboe, T. & E. Saiz, 1995. Planktivorous feeding in calm and turbulent environments, with emphasis on copepodes. Marine Ecology-Progress Series 122: 135–145.

    Article  Google Scholar 

  • Kundu, P. K. & I. M. Cohen, 2010. Fluid Mechanics. Academic Press, San Diego.

    Google Scholar 

  • Liljendahl-Nurminen, A., J. Horppila, T. Malinen, P. Eloranta, M. Vinni, E. Alajärvi & S. Valtonen, 2003. The supremacy of invertebrate predators over fish – factors behind the unconventional seasonal dynamics of cladocerans in Lake Hiidenvesi. Archiv für Hydrobiologie 158: 75–96.

    Article  Google Scholar 

  • Lough, R. G. & D. G. Mountain, 1996. Effect of small-scale turbulence on feeding rates of larval cod and haddock in stratified water on Georges Bank. Deep-Sea Research II 43: 1745–1772.

    Article  Google Scholar 

  • Luokkanen, E. 1994. Vesikirppuyhteisön lajisto, biomassa ja tuotanto Vesijärven Enonselällä. MSc Thesis, University of Helsinki: 58 pp (in Finnish).

  • MacKenzie, B. R. & T. Kiørboe, 2000. Larval fish feeding and turbulence: a case for the downside. Limnology and Oceanography 45: 1–10.

    Article  Google Scholar 

  • MacKenzie, B. R. & W. C. Leggett, 1991. Quantifying the contribution of small-scale turbulence to the encounter rates between larval fish and their zooplankton prey: effects of wind and tide. Marine Ecology – Progress Series 73: 149–160.

    Article  Google Scholar 

  • MacKenzie, B. R., T. J. Miller, S. Cyr & W. C. Leggett, 1994. Evidence for a dome-shaped relationship between turbulence and larval fish ingestion rates. Limnology and Oceanography 39: 1790–1799.

    Article  Google Scholar 

  • Marrasé, C., J. H. Costello, T. Granata & J. R. Strickler, 1990. Grazing in a turbulent environment: energy dissipation, encounter rates, and efficacy of feeding currents in Centropages hamatus. Proceedings of the National Academy of Sciences of the United States of America 87: 1653–1657.

    Article  PubMed  Google Scholar 

  • Moum, J. N., 1996. Energy-containing scales of turbulence in the ocean thermocline. Journal of Geophysical Research 101: 14095–14109.

    Article  Google Scholar 

  • Osborn, T., 1996. The role of turbulent diffusion for copepods with feeding currents. Journal of Plankton Research 18: 185–195.

    Article  Google Scholar 

  • Pastorok, R. A., 1980. The effects of predator hunger and food abundance on prey selection by Chaoborus larvae. Limnology and Oceanography 25: 910–921.

    Article  Google Scholar 

  • Pastorok, R. A., 1981. Prey vulnerability and size selection by Chaoborus larvae. Ecology 62: 1311–1324.

    Article  Google Scholar 

  • Peters, F. & J. M. Redondo, 1997. Turbulence generation and measurement: application to studies on plankton. Scientia Marina 61: 205–228.

    Google Scholar 

  • Riessen, H. P., W. J. O’Brien & B. Loveless, 1984. An analysis of the components of Chaoborus predation on zooplankton and the calculation of relative prey vulnerabilities. Ecology 65: 514–522.

    Article  Google Scholar 

  • Rothschild, B. J. & T. R. Osborn, 1988. Small-scale turbulence and plankton contact rates. Journal of Plankton Research 10: 465–474.

    Article  Google Scholar 

  • Saggio, A. & J. Imberger, 2001. Mixing and turbulent fluxes in the metalimnion of a stratified lake. Limnology and Oceanography 46: 392–409.

    Article  Google Scholar 

  • Saiz, E. & T. Kiørboe, 1995. Predatory and suspension-feeding of the copepod Acartia tonsa in turbulent environments. Marine Ecology – Progress Series 122: 280–289.

    Article  Google Scholar 

  • Saiz, E., M. Alcaraz & G.-A. Paffenhöfer, 1992. Effects of small-scale turbulence on feeding rate and gross-growth efficiency of three Acartia species (Copepoda: Calanoida). Journal of Plankton Research 14: 1085–1097.

    Article  Google Scholar 

  • Smyly, W. J. P., 1980. Food and feeding of aquatic larvae of the midge Chaoborus flavicans (Meigen) (Diptera: Chaoboridae) in the laboratory. Hydrobiologia 70: 179–188.

    Article  Google Scholar 

  • Stiansen, J. E. & S. Sundby, 2001. Improved methods for generating and estimating turbulence in tanks suitable for fish larvae experiments. Scientia Marina 65: 151–167.

    Article  Google Scholar 

  • Sundby, S. & P. Fossum, 1990. Feeding conditions of Arcto-norwegian cod larvae compared with the Rothschild–Osborn theory on small-scale turbulence and plankton contact rates. Journal of Plankton Research 12: 1153–1162.

    Article  Google Scholar 

  • Swift, M. C. & A. Y. Fedorenko, 1973. A rapid method for the analysis of the crop contents of Chaoborus larvae. Limnology and Oceanography 18: 795–798.

    Article  Google Scholar 

  • Swift, M. C. & A. Y. Fedorenko, 1975. Some aspects of prey capture by Chaoborus larvae. Limnology and Oceanography 20: 418–425.

    Article  Google Scholar 

  • Unger, P. A. & W. M. Lewis Jr, 1983. Selective predation with respect to body size in a population of the fish Xenomelaniris venezuelae (Atherinidae). Ecology 64(5): 1136–1144.

    Article  Google Scholar 

  • von Ende, C. N., 1979. Fish predation, interspecific predation, and the distribution of two Chaoborus species. Ecology 60: 119–128.

    Article  Google Scholar 

  • Wagner-Döbler, I., 1988. Vertical migration of Chaoborus flavicans (Diptera, Chaoboridae): the control of day and night depth by environmental parameters. Archiv für Hydrobiologie 114: 251–274.

    Google Scholar 

  • Yen, J. & J. R. Strickler, 1996. Advertisement and concealment in the plankton: what makes a copepod hydrodynamically conspicuous? Invertebrate Biology 115: 191–205.

    Article  Google Scholar 

  • Young, S., P. J. Watt, J. P. Grover & D. Thomas, 1994. The unselfish swarm? Journal of Animal Ecology 63: 611–618.

    Article  Google Scholar 

  • Zaret, T. M., 1980. Predation and Freshwater Communities. Yale University Press, New Haven.

    Google Scholar 

Download references

Acknowledgments

The study was financed by the Academy of Finland (project 131579). Jouko Sarén assisted with the construction of the experimental setup and Saija Rautakorpi helped with the data collection. We acknowledge William M. Lewis, Jr., and the anonymous reviewer for the valuable comments improving the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Härkönen.

Additional information

Handling editor: Karl E. Havens

Rights and permissions

Reprints and permissions

About this article

Cite this article

Härkönen, L., Pekcan-Hekim, Z., Hellén, N. et al. Feeding efficiency of Chaoborus flavicans (Insecta, Diptera) under turbulent conditions. Hydrobiologia 722, 9–17 (2014). https://doi.org/10.1007/s10750-013-1670-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1670-y

Keywords

Navigation