, Volume 721, Issue 1, pp 269–284 | Cite as

Phenotypic differentiation of Ponto-Caspian gobies during a contemporary invasion of the upper Danube River

  • Alexander F. Cerwenka
  • Paul Alibert
  • Joerg Brandner
  • Juergen Geist
  • Ulrich K. Schliewen
Primary Research Paper


Evolution is known to act on contemporary timescales and invasive organisms are often used to study rapid evolutionary changes of geno- and phenotypes under natural conditions. The ability and speed of local adaptation is discussed as a key character triggering successful invasions. Variation of body shape among populations of two highly invasive, sympatric Ponto-Caspian goby species (Teleostei: Gobiidae) with a comparable invasion history in the upper Danube River, i.e. Neogobius melanostomus and Ponticola kessleri, was assessed using geometric morphometric methods. Phenotypic variation established within less than 15 generations was evident in both species. It was mainly correlated with geographical location, but in N. melanostomus also with substrate type, an ecological variable reflecting habitat quality. The two species differed in their degree of intraspecific variation which was more pronounced in N. melanostomus, the numerically dominant invader in the upper Danube. Body shape variation significantly correlating with geographical rather than ecological variables suggests a heritable component and renders phenotypic plasticity as a lone explanation unlikely. Patterns of body shape similarity among upper Danubian goby populations suggest a stepping-stone rather than a continuous expansion model for both species, where multiple introductions, possibly from various origins, may have shaped differentiation.


Neogobius melanostomus Ponticola kessleri Body shape Local adaptation Aquatic invasive species Geometric morphometrics 



We thank all the friendly and helpful owners of the local fishing rights, the “Fischereifachberatungen” and Dr. G. Zauner who supported our sampling. Further we thank Dr. M. Geiger, Dr. A. Dunz, A. Wickler, and Dr. C. Firmat for helpful assistance using geometric morphometrical analysis. Manuscript preparation benefited from critical comments and suggestions by Dr. S. Beggel. This project was funded by the German Research Council DFG, project-number SCHL 567/5-1 and GE 2169/1-1 (AOBJ: 569812).


  1. Adajar, A. Q., M. A. J. Torres & C. G. Demayo, 2011. Sexual dimorphism in the shape of the primary flight feathers of parakeet-budgerigar, Melopsittacus undulatus Shaw (1805). 2nd International Conference on Environmental Science and Technology, Singapore.Google Scholar
  2. Agrawal, A. A., 2001. Phenotypic plasticity in the interactions and evolution of species. Science 294: 321–326.PubMedCrossRefGoogle Scholar
  3. Andersson, J., F. Johansson & T. Söderlund, 2006. Interactions between predator- and diet-induced phenotypic changes in body shape of crucian carp. Proceedings of the Royal Society B 273: 431–437.PubMedCrossRefGoogle Scholar
  4. Bailey, R. C. & J. Byrnes, 1990. A new, old method for assessing measurement error in both univariate and multivariate morphometric studies. Systematic Zoology 39: 124–130.CrossRefGoogle Scholar
  5. Bernatchez, L., 2001. The evolutionary history of brown trout (Salmo trutta L.) inferred from phylogeographic, nested clade, and mismatch analyses of mitochondrial DNA variation. Evolution 55: 351–379.PubMedGoogle Scholar
  6. Bossdorf, O., H. Auge, L. Lafuma, W. E. Rogers, E. Siemann & D. Prati, 2005. Phenotypic and genetic differentiation between native and introduced plant populations. Oecologia 144: 1–11.PubMedCrossRefGoogle Scholar
  7. Braks, M. A. H., N. A. Honório, L. P. Lounibos, R. Lourenço-De-Oliveira & S. A. Juliano, 2004. Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Annals of the Entomological Society of America 97: 130–139.CrossRefGoogle Scholar
  8. Brandner, J., A. F. Cerwenka, U. K. Schliewen & J. Geist, 2013a. Bigger is better: characteristics of round gobies forming an invasion front in the Danube River. PLOS One 8: e73036.Google Scholar
  9. Brandner, J., K. Auerswald, A. F. Cerwenka, U. K. Schliewen & J. Geist, 2013b. Comparative feeding ecology of invasive Ponto-Caspian gobies. Hydrobiologia 703: 113–131.CrossRefGoogle Scholar
  10. Brandner, J., J. Pander, M. Mueller, A. F. Cerwenka & J. Geist, 2013c. Effects of sampling techniques on population assessment of invasive round goby Neogobius melanostomus. Journal of Fish Biology 82: 2063–2079.PubMedCrossRefGoogle Scholar
  11. Bronnenhuber, J. E., B. A. Dufour, D. M. Higgs & D. D. Heath, 2011. Dispersal strategies, secondary range expansion and invasion genetics of the nonindigenous round goby, Neogobius melanostomus, in Great Lakes tributaries. Molecular Ecology 20: 1845–1859.PubMedCrossRefGoogle Scholar
  12. Brown, J. E. & C. A. Stepien, 2008. Ancient divisions, recent expansions: phylogeography and population genetics of the round goby Apollonia melanostoma. Molecular Ecology 17: 2598–2615.PubMedCrossRefGoogle Scholar
  13. Brownscombe, J., L. Masson, D. Beresford & M. Fox, 2012. Modeling round goby Neogobius melanostomus range expansion in a Canadian river system. Aquatic Invasions 7: 537–545.CrossRefGoogle Scholar
  14. Burns, J. G., P. Di Nardo & F. H. Rodd, 2009. The role of predation in variation in body shape in guppies Poecilia reticulata: a comparison of field and common garden phenotypes. Journal of Fish Biology 75: 1144–1157.PubMedCrossRefGoogle Scholar
  15. Caldecutt, W. J. & D. C. Adams, 1998. Morphometrics of trophic osteology in the threespine stickleback, Gasterosteus aculeatus. Copeia 1998: 827–838.CrossRefGoogle Scholar
  16. Čápová, M., I. Zlatnická, V. Kováč & S. Katina, 2008. Ontogenetic variability in the external morphology of f monkey goby, Neogobius fluviatilis (Pallas, 1814) and its relevance to invasion potential. Hydrobiologia 607: 17–26.CrossRefGoogle Scholar
  17. Collin, H. & L. Fumagalli, 2011. Evidence for morphological and adaptive genetic divergence between lake and stream habitats in European minnows (Phoxinus phoxinus, Cyprinidae). Molecular Ecology 20: 4490–4502.PubMedCrossRefGoogle Scholar
  18. Corkum, L. D., M. R. Sapota & K. E. Skora, 2004. The round goby, Neogobius melanostomus, a fish invader on both sides of the Atlantic Ocean. Biological Invasions 6: 173–181.CrossRefGoogle Scholar
  19. Coyne, J. A. & H. A. Orr, 1989. Patterns of speciation in Drosophila. Evolution 43: 362–381.Google Scholar
  20. Coyne, J. A. & H. A. Orr, 2004. Recombinational speciation. In Coyne, J. A. & H. A. Orr (eds), Speciation. Sinauer Associates Inc, Sutherland, MA: 337–351.Google Scholar
  21. Davidson, A. M., M. Jennions & A. B. Nicotra, 2011. Do invasive species show higher phenotypic plasticity than native species and, if so, is it adaptive? A meta-analysis. Ecology Letters 14: 419–431.PubMedCrossRefGoogle Scholar
  22. Dlugosch, K. M. & I. M. Parker, 2008. Founding events in species invasions: genetic variation, adaptive evolution, and the role of multiple introductions. Molecular Ecology 17: 431–449.PubMedCrossRefGoogle Scholar
  23. Drake, A. G. & C. P. Klingenberg, 2008. The pace of morphological change. Historical transformation of skull shape in St Bernard dogs. Proceedings of the Royal Society B 275: 71–76.PubMedCrossRefGoogle Scholar
  24. Eros, T., A. Sevcsik & B. Toth, 2005. Abundance and night-time habitat use patterns of Ponto-Caspian goby species (Pisces, Gobiidae) in the littoral zone of the River Danube, Hungary. Journal of Applied Ichthyology 21: 350–357.CrossRefGoogle Scholar
  25. Firmat, C., U. K. Schliewen, M. Losseau & P. Alibert, 2012. Body shape differentiation at global and local geographic scales in the invasive cichlid Oreochromis mossambicus. Biological Journal of the Linnean Society 105: 369–381.CrossRefGoogle Scholar
  26. Fitzpatrick, B. M., 2012. Underappreciated consequences of phenotypic plasticity for ecological speciation. International Journal of Ecology 2012: 1–12.CrossRefGoogle Scholar
  27. Fischer-Rousseau, L., K. P. Chu & R. Cloutier, 2010. Developmental plasticity in fish exposed to a water velocity gradient: a complex response. Journal of Experimental Zoology 314: 67–85.PubMedGoogle Scholar
  28. Fox, M. G., A. Vila-Gispert & G. H. Copp, 2007. Life-history traits of introduced Iberian pumpkinseed Lepomis gibbosus relative to native populations. Can differences explain colonization success? Journal of Fish Biology 71: 56–69.CrossRefGoogle Scholar
  29. Fruciano, C., C. Tigano & V. Ferrito, 2011. Geographical and morphological variation within and between colour phases in Coris julis (L. 1758), a protogynous marine fish. Biological Journal of the Linnean Society 104: 148–162.CrossRefGoogle Scholar
  30. Gavrilets, S., 2004. Genetic theories of allopatric and parapatric speciation. In Dieckmann, U., M. Doebeli, J. A. J. Metz & D. Tautz (eds), Adaptive Speciation. Cambridge University Press, Cambridge: 112–139.Google Scholar
  31. García-Ramosa, G. & D. Rodríguez, 2002. Evolutionary speed of species invasions. Evolution 56: 661–668.CrossRefGoogle Scholar
  32. Grabowska, J. & M. Grabowski, 2005. Diel-feeding activity in early summer of racer goby Neogobius gymnotrachelus (Gobiidae): a new invader in the Baltic basin. Journal of Applied Ichthyology 21: 282–286.CrossRefGoogle Scholar
  33. Griffiths, D., 2006. Pattern and process in the ecological biogeography of European freshwater fish. The Journal of Animal Ecology 75: 734–751.PubMedCrossRefGoogle Scholar
  34. Grosholz, E. D., 2005. Recent biological invasion may hasten invasional meltdown by accelerating historical introductions. Proceedings of the National Academy of Sciences of the United States of America 102: 1088–1091.PubMedCrossRefGoogle Scholar
  35. Gutowsky, L. F. G., J. W. Brownscombe & M. G. Fox, 2011. Angling to estimate the density of large round goby (Neogobius melanostomus). Fisheries Research 108: 228–231.CrossRefGoogle Scholar
  36. Haas, T. C., M. J. Blum & D. C. Heins, 2010. Morphological responses of a stream fish to water impoundment. Biology Letters 6: 803–806.PubMedCrossRefGoogle Scholar
  37. Haertl, M., A. F. Cerwenka, J. Brandner, J. Borcherding, J. Geist & U. K. Schliewen, 2012. First record of Babka gymnotrachelus (Kessler, 1857) from Germany. Spixiana 35: 155–159.Google Scholar
  38. Hewitt, G. M., 1996. Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society 58: 247–276.Google Scholar
  39. Hewitt, G. M., 2000. The genetic legacy of the Quaternary ice ages. Nature 405: 907–913.PubMedCrossRefGoogle Scholar
  40. Hewitt, G. M., 2001. Speciation, hybrid zones and phylogeography – or seeing genes in space and time. Molecular Ecology 10: 537–549.PubMedCrossRefGoogle Scholar
  41. Hewitt, G. M., 2004. Genetic consequences of climatic oscillations in the Quaternary. Philosophical transactions of the Royal Society of London B 359: 183–195.CrossRefGoogle Scholar
  42. Huey, R. B., G. W. Gilchrist, M. L. Carlson, D. Berrigan & L. Serra, 2000. Rapid evolution of a geographic cline in size in an introduced fly. Science 287: 308–309.PubMedCrossRefGoogle Scholar
  43. Keller, R. P., J. Geist, J. M. Jeschke & I. Kühn, 2011. Invasive species in Europe: ecology, status, and policy. Environmental Sciences Europe 23: 23.CrossRefGoogle Scholar
  44. Klingenberg, C. P., 2011. MorphoJ: an integrated software package for geometric morphometrics. Molecular Ecology Resources 11: 353–357.PubMedCrossRefGoogle Scholar
  45. Klingenberg, C. P., G. S. McIntyre & S. D. Zaklan, 1998. Left-right asymmetry of fly wings and the evolution of body axes. Proceedings of the Royal Society B 265: 1255–1259.PubMedCrossRefGoogle Scholar
  46. Kolar, C. S. & D. M. Lodge, 2002. Ecological predictions and risk assessment for alien fishes in North America. Science 298: 1233–1236.PubMedCrossRefGoogle Scholar
  47. Kornis, M. S., N. Mercado-Silva & M. J. Vander Zanden, 2012. Twenty years of invasion: a review of round goby Neogobius melanostomus biology, spread and ecological implications. Journal of Fish Biology 80: 235–285.PubMedCrossRefGoogle Scholar
  48. Kováč, V. & S. Siryova, 2005. Ontogenetic variability in external morphology of bighead goby Neogobius kessleri from the Middle Danube, Slovakia. Journal of Applied Ichthyology 21: 312–315.CrossRefGoogle Scholar
  49. Kováč, V., G. H. Copp & R. P. Sousa, 2009. Life-history traits of invasive bighead goby Neogobius kessleri (Günther, 1861) from the middle Danube River, with a reflection on which goby species may win the competition. Journal of Applied Ichthyology 25: 33–37.Google Scholar
  50. Lambrinos, J. G., 2004. How interactions between ecology and evolution influence contemporary invasion dynamics. Ecology 85: 2061–2070.CrossRefGoogle Scholar
  51. Langerhans, R. B. & T. J. DeWitt, 2004. Shared and unique features of evolutionary diversification. The American Naturalist 164: 335–349.PubMedCrossRefGoogle Scholar
  52. Langerhans, R. B., L. J. Chapman & T. J. DeWitt, 2007. Complex phenotype–environment associations revealed in an East African cyprinid. Journal of Evolutionary Biology 20: 1171–1181.PubMedCrossRefGoogle Scholar
  53. L’avrincikova, M., V. Kováč & S. Katina, 2005. Ontogenetic variability in external morphology of round goby Neogobius melanostomus from Middle Danube, Slovakia. Journal of Applied Ichthyology 21: 328–334.CrossRefGoogle Scholar
  54. Lawing, A. M. & P. D. Polly, 2010. Geometric morphometrics: recent applications to the study of evolution and development. Journal of Zoology 280: 1–7.CrossRefGoogle Scholar
  55. Lee, C. E., 2002. Evolutionary genetics of invasive species. Trends in Ecology & Evolution 17: 386–391.CrossRefGoogle Scholar
  56. Leinonen, T., J. M. Cano & J. Merila, 2011. Genetics of body shape and armour variation in threespine sticklebacks. Journal of Evolutionary Biology 24: 206–218.PubMedCrossRefGoogle Scholar
  57. Lind, M. I. & F. Johansson, 2007. The degree of adaptive phenotypic plasticity is correlated with the spatial environmental heterogeneity experienced by island populations of Rana temporaria. Journal of Evolutionary Biology 20: 1288–1297.PubMedCrossRefGoogle Scholar
  58. Moczek, A. P. & H. F. Nijhout, 2003. Rapid evolution of a polyphenic threshold. Evolution & Development 5: 259–268.CrossRefGoogle Scholar
  59. Mooney, H. A. & E. E. Cleland, 2001. The evolutionary impact of invasive species. Proceedings of the National Academy of Sciences of the United States of America 98: 5446–5451.PubMedCrossRefGoogle Scholar
  60. Naseka, A. M., V. S. Boldyrev, N. G. Bogutskaya & V. V. Delitsyn, 2005. New data on the historical and expanded range of Proterorhinus marmoratus (Pallas, 1814) (Teleostei: Gobiidae) in eastern Europe. Journal of Applied Ichthyology 21: 300–305.CrossRefGoogle Scholar
  61. Nolte, A. W. & H. D. Sheets, 2005. Shape based assignment tests suggest transgressive phenotypes in natural sculpin hybrids (Teleostei, Scorpaeniformes, Cottidae). Frontiers in Zoology 2: 1–12.CrossRefGoogle Scholar
  62. O’Reilly, K. M. & M. H. Horn, 2004. Phenotypic variation among populations of Atherinops affinis (Atherinopsidae) with insights from a geometric morphometric analysis. Journal of Fish Biology 64: 1117–1135.CrossRefGoogle Scholar
  63. Orr, M. R. & T. B. Smith, 1998. Ecology and speciation. Trends in Ecology & Evolution 13: 502–506.CrossRefGoogle Scholar
  64. Paintner, S. & K. Seifert, 2006. First record of the round goby, Neogobius melanostomus (Gobiidae), in the German Danube. Lauterbornia 58: 101–107.Google Scholar
  65. Parsons, K. J., B. W. Robinson & T. Hrbekb, 2003. Getting into shape: an empirical comparison of traditional truss-based morphometric methods with a newer geometric method applied to New World cichlids. Environmental Biology of Fishes 67: 417–431.CrossRefGoogle Scholar
  66. Pfaender, J., U. K. Schliewen & F. Herder, 2009. Phenotypic traits meet patterns of resource use in the radiation of “sharpfin” sailfin silverside fish in Lake Matano. Evolutionary Ecology 24: 957–974.CrossRefGoogle Scholar
  67. Pigliucci, M., 2005. Evolution of phenotypic plasticity: where are we going now? Trends in Ecology & Evolution 20: 481–486.CrossRefGoogle Scholar
  68. Polačik, M., M. Janáč, P. Jurajda, Z. Adámek, M. Ondračková, T. Trichkova & M. Vassilev, 2009. Invasive gobies in the Danube: invasion success facilitated by availability and selection of superior food resources. Ecology of Freshwater Fish 18: 640–649.CrossRefGoogle Scholar
  69. Polačik, M., M. Janáč, M. Vassilev & T. Trichkova, 2012. Morphometric comparison of native and non-native populations of round goby Neogobius melanostomus from the River Danube. Folia Zooligica 61: 1–8.Google Scholar
  70. Prentis, P. J., J. R. U. Wilson, E. E. Dormontt, D. M. Richardson & A. J. Lowe, 2008. Adaptive evolution in invasive species. Trends in Plant Science 13: 288–294.PubMedCrossRefGoogle Scholar
  71. Price, T. D. & D. Sol, 2008. Introduction: genetics of colonizing species. The American Naturalist 172: S1–S3.PubMedCrossRefGoogle Scholar
  72. R Development Core Team (2011). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051 07-0,
  73. Richards, C. L., O. Bossdorf, N. Z. Muth, J. Gurevitch & M. Pigliucci, 2006. Jack of all trades, master of some? On the role of phenotypic plasticity in plant invasions. Ecology Letters 9: 981–993.PubMedCrossRefGoogle Scholar
  74. Rohlf, F. J., 2006a. TpsUtil, File Utility Program, Version 1.38. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
  75. Rohlf, F. J., 2006b. TpsDig, Digitize Landmarks and Outlines, Version 2.10. Department of Ecology and Evolution, State University of New York at Stony Brook.Google Scholar
  76. Rohlf, F. J. & L. F. Marcus, 1993. A revolution in morphometrics. Trends in Ecology and Evolution 8: 129–132.CrossRefGoogle Scholar
  77. Sax, D. F., J. J. Stachowicz, J. H. Brown, J. F. Bruno, M. N. Dawson, S. D. Gaines, R. K. Grosberg, A. Hastings, R. D. Holt, M. M. Mayfield, M. I. O’Connor & W. R. Rice, 2007. Ecological and evolutionary insights from species invasions. Trends in Ecology & Evolution 22: 465–471.CrossRefGoogle Scholar
  78. Schluter, D., 2000. Ecological character displacement in adaptive radiation. The American Naturalist 156: S4–S16.CrossRefGoogle Scholar
  79. Seehausen, O., Y. Terai, I. S. Magalhaes, K. L. Carleton, H. D. J. Mrosso, R. Miyagi, I. van der Sluijs, M. V. Schneider, M. E. Maan, H. Tachida, H. Imai & N. Okada, 2008a. Speciation through sensory drive in cichlid fish. Nature 455: 620–626.PubMedCrossRefGoogle Scholar
  80. Seehausen, O., G. Takimoto, D. Roy & J. Jokela, 2008b. Speciation reversal and biodiversity dynamics with hybridization in changing environments. Molecular Ecology 17: 30–44.PubMedCrossRefGoogle Scholar
  81. Seifert, K. & F. Hartmann, 2000. Die Kesslergrundel (Neogobius kessleri Günther 1861), eine neue Fischart in der deutschen Donau. Lauterbornia 38: 105–108.Google Scholar
  82. Simonovic, P. D., 1996. Cranial osteology of the bighead goby Neogobius kessleri from the rivers Danube and Sava (Serbia, Yugoslavia). Italian Journal of Zoology 63: 65–72.Google Scholar
  83. Simonovic, P. D., M. Paunovic & S. Popovic, 2001. Morphology, feeding, and reproduction of the round goby, Neogobius melanostomus (Pallas), in the Danube River Basin, Yugoslavia. Journal of Great Lakes Research 27: 281–289.CrossRefGoogle Scholar
  84. Smirnov A. I., 1986. Okuneobraznye (bychkovidnye), skorpenoobraznye, kambaloobraznye, prisoskoperoobraznye, udil′tchikoobraznye. Fauna Ukrainy 8, Naukova Dumka, Kiev: 320 pp (in Russian).Google Scholar
  85. Smith, T. B. & S. Skulason, 1996. Evolutionary significance of resource polymorphisms in fishes, amphibians, and birds. Annual Review of Ecology and Systematics 27: 111–133.CrossRefGoogle Scholar
  86. Sokolowska, E. & D. P. Fey, 2011. Age and growth of the round goby Neogobius melanostomus in the Gulf of Gdansk several years after invasion. Is the Baltic Sea a new promised land? Journal of Fish Biology 78: 1993–2009.PubMedCrossRefGoogle Scholar
  87. Stelkens, R. B., G. Jaffuel, M. Escher & C. Wedekind, 2012. Genetic and phenotypic population divergence on a microgeographic scale in brown trout. Molecular Ecology 21: 2896–2915.PubMedCrossRefGoogle Scholar
  88. Stepien, C. A. & M. A. Tumeo, 2006. Invasion genetics of Ponto-Caspian gobies in the Great Lakes: a “cryptic” species, absence of founder effects, and comparative risk analysis. Biological Invasions 8: 61–78.CrossRefGoogle Scholar
  89. Stockwell, C. A., A. P. Hendry & M. T. Kinnison, 2003. Contemporary evolution meets conservation biology. Trends in Ecology and Evolution 18: 94–101.CrossRefGoogle Scholar
  90. Stráňai, I., 1999. Plodnosť Neogobius Kessleri (Günther, 1861) zo slovenského úseku Dunaja (Fertility of Neogobius Kessleri (Günther, 1861) from Slovak part of Danube river). Czech Journal of Animal Science 44: 215–218 (in Slovak with English summary).Google Scholar
  91. Strayer, D. L., V. T. Eviner, J. M. Jeschke & M. L. Pace, 2006. Understanding the long-term effects of species invasions. Trends in Ecology & Evolution 21: 645–651.CrossRefGoogle Scholar
  92. Taraborelli, A. C., M. G. Fox, T. B. Johnson & T. Schaner, 2010. Round Goby (Neogobius melanostomus) population structure, biomass, prey consumption and mortality from predation in the Bay of Quinte, Lake Ontario. Journal of Great Lakes Research 36: 625–632.CrossRefGoogle Scholar
  93. Travis, J. M. J., T. Münkemüller, O. J. Burton, A. Best, C. Dytham & K. Johst, 2007. Deleterious mutations can surf to high densities on the wave front of an expanding population. Molecular Biology and Evolution 24: 2334–2343.PubMedCrossRefGoogle Scholar
  94. Tsutsui, N. D., A. V. Suarez, D. A. Holway & T. J. Case, 2000. Reduced genetic variation and the success of an invasive species. Proceedings of the National Academy of Sciences of the United States of America 97: 5948–5953.PubMedCrossRefGoogle Scholar
  95. Valiente, A. G., F. Juanes, P. Nuñez & E. Garcia-Vazquez, 2010. Brown trout (Salmo trutta) invasiveness: plasticity in life-history is more important than genetic variability. Biological Invasions 12: 451–462.CrossRefGoogle Scholar
  96. Vellend, M., L. J. Harmon, J. L. Lockwood, M. M. Mayfield, A. R. Hughes, J. P. Wares & D. F. Sax, 2007. Effects of exotic species on evolutionary diversification. Trends in Ecology & Evolution 22: 481–488.CrossRefGoogle Scholar
  97. Walker, J. A., 2010. An integrative model of evolutionary covariance: a symposium on body shape in fishes. Integrative and Comparative Biology 50: 1051–1056.PubMedCrossRefGoogle Scholar
  98. West-Eberhard, M. J., 2003. Developmental Plasticity and Evolution. Oxford University Press, New York.Google Scholar
  99. Wiesner, C., 2005. New records of non-indigenous gobies (Neogobius spp.) in the Austrian Danube. Journal of Applied Ichthyology 21: 324–327.Google Scholar
  100. Wimberger, P. H., 1992. Plasticity of fish body shape. The effects of diet, development, family and age in two species of Geophagus (Pisces: Cichlidae). Biological Journal of the Linnean Society 45: 197–218.CrossRefGoogle Scholar
  101. Yezerinac, S. M., S. C. Lougheed & P. Handford, 1992. Measurement error and morphometric studies. Statistical power and observer experience. Systematic Biology 41: 471–482.Google Scholar
  102. Zamudio, K. R. & W. K. Savage, 2003. Historical isolation, range expansion, and secondary contact of two highly divergent mitochondrial lineages in spotted salamanders (Ambystoma maculatum). Evolution 57: 1631–1652.PubMedGoogle Scholar
  103. Zelditch, M. L., D. L. Swiderski, H. D. Sheets & W. L. Fink, 2004. Geometric Morphometrics for Biologists. Academic Press, London.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Alexander F. Cerwenka
    • 1
    • 2
  • Paul Alibert
    • 3
  • Joerg Brandner
    • 2
  • Juergen Geist
    • 2
  • Ulrich K. Schliewen
    • 1
  1. 1.Department of IchthyologyBavarian State Collection of Zoology (ZSM)MunichGermany
  2. 2.Aquatic Systems Biology Unit, Center of Life Science WeihenstephanTechnische Universität MünchenFreisingGermany
  3. 3.UMR CNRS 6282 BiogéosciencesUniversité de BourgogneDijonFrance

Personalised recommendations