Hydrobiologia

, Volume 721, Issue 1, pp 197–207

Spatial genetic heterogeneity of the cosmopolitan chaetognath Eukrohnia hamata (Möbius, 1875) revealed by mitochondrial DNA

  • Dmitry N. Kulagin
  • Alexandra N. Stupnikova
  • Tatyana V. Neretina
  • Nikolai S. Mugue
Primary Research Paper

Abstract

Some holoplanktonic species are cosmopolitan and have continuous distribution in the world’s oceans. For most of these species it is not clear whether there is unhampered gene flow between far distant populations or they represent a complex of cryptic species. In the present study we investigated genetic diversity of the cosmopolitan chaetognath Eukrohnia hamata in order to identify its spatial structure. DNA-barcode fragment of the mitochondrial COI gene was determined and analyzed for E. hamata specimens collected in the Arctic Ocean, Atlantic Ocean, and Atlantic sector of the Southern Ocean. Five lineages were determined by the phylogenetic analysis with robust statistical support. Three lineages: Antarctic (Eh-1), Subantarctic (Eh-2), and Arctic (Eh-3) had significant genetic differences and were geographically separated. Two other lineages: Eh-4 and Eh-5, that had the smallest genetic difference, were observed together in tropical waters, but they were geographically separated from the other lineages. We suppose that geographical distribution of most of the E. hamata lineages is shaped by the large-scale oceanic fronts, considered as biogeographic boundaries for numerous zooplankton species. Genetic homogeneity of Arctic, Subantarctic, and Antarctic lineages was also shown, each within its regions of inhabit.

Keywords

Chaetognaths Eukrohnia hamata Mitochondrial DNA Population structure Phylogeography 

References

  1. Alvariño, A., 1964. Bathymetric distribution of chaetognaths. Pacific Science 18: 64–82.Google Scholar
  2. Alvariño, A., 1969. Los Quetognatos del Atlantico. Distribucion y notas esenciales de sistematica. Trabajos Instituto Espanol de Oceanografia 37: 1–290.Google Scholar
  3. Bieri, R., 1959. The distribution of the planktonic Chaetognatha in the Pacific and their relationship to the water masses. Limnology and Oceanography 4: 1–28.CrossRefGoogle Scholar
  4. Bucklin, A. & P. H. Wiebe, 1998. Low mitochondrial diversity and small effective population sizes of the copepods Calanus finmarchicus and Nannocalanus minor: possible impact of climatic variation during recent glaciation. Journal of Heredity 89: 383–392.PubMedCrossRefGoogle Scholar
  5. Bucklin, A., O. S. Astthorsson, A. Gislason, L. D. Allen, S. B. Smolenack & P. H. Wiebe, 2000a. Population genetic variation of Calanus finmarchicus in Icelandic waters: preliminary evidence of genetic differences between Atlantic and Arctic populations. ICES Journal of Marine Science 57: 1592–1604.CrossRefGoogle Scholar
  6. Bucklin, A., S. Kaartvedt, M. Guarnieri & U. Goswami, 2000b. Population genetics of drifting (Calanus spp.) and resident (Acartia clausi) plankton in Norwegian fjords. Journal of Plankton Research 22: 1237–1251.CrossRefGoogle Scholar
  7. Bucklin, A., R. R. Hopcroft, K. N. Kosobokova, L. M. Nigro, B. D. Ortman, R. M. Jennings & C. J. Sweetman, 2010. DNA barcoding of Arctic Ocean holozooplankton for species identification and recognition. Deep-Sea Research II: Topical Studies in Oceanography 57: 40–48.CrossRefGoogle Scholar
  8. Casanova, J.-P., 1999. Chaetognatha. In Boltovskoy, D. (ed.), South Atlantic Zooplankton. Backhuys Publishers, Leiden: 1353–1374.Google Scholar
  9. Coachman, L. K. & C. A. Barnes, 1963. The movement of Atlantic Water in the Arctic Ocean. Arctic 16: 8–16.Google Scholar
  10. Costa, F. O., J. R. deWaard, J. Boutillier, S. Ratnasingham, R. T. Dooh, M. Hajibabae & P. D. N. Hebert, 2007. Biological identifications through DNA barcodes: the case of the Crustacea. Canadian Journal of Fisheries and Aquatic Sciences 64: 272–295.CrossRefGoogle Scholar
  11. David, P. M., 1958. The distribution of the Chaetognatha of the Southern Ocean. Discovery Reports 29: 199–228.Google Scholar
  12. Deacon, G. E. R., 1937. The hydrology of the Southern Ocean. Discovery Reports 15: 1–124.Google Scholar
  13. Felsenstein, J., 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39: 783–791.CrossRefGoogle Scholar
  14. Folmer, O., M. Black, W. Hoeh, R. Lutz & R. Vrijenhoek, 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3: 294–299.PubMedGoogle Scholar
  15. Funk, D. J. & K. E. Omland, 2003. Species-level paraphyly and polyphyly: frequency, causes, and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics 34: 397–423.CrossRefGoogle Scholar
  16. Goetze, E., 2003. Cryptic speciation on the high seas: global phylogenetics of the copepod family Eucalanidae. Proceedings of the Royal Society of London Series B: Biological Sciences 270: 2321–2331.PubMedCrossRefGoogle Scholar
  17. Goetze, E., 2005. Global population genetic structure and biogeography of the oceanic copepods Eucalanus hyalinus and E. spinifer. Evolution 59: 2378–2398.PubMedGoogle Scholar
  18. Golivets, S. V. & M. N. Koshlyakov, 2009. Synoptic eddies of the Subantarctic and Agulhas fronts and generation of the Antarctic Intermediate Water in the Atlantic Ocean. Oceanology 49: 151–165.CrossRefGoogle Scholar
  19. Hebert, P. D. N., S. Ratnasingham & J. R. de Waard, 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London Series B: Biological Sciences 270: S96–S99.PubMedCrossRefGoogle Scholar
  20. Hirche, H. J. & K. N. Kosobokova, 2007. Distribution of Calanus finmarchicus in the northern North Atlantic and Arctic Ocean—expatriation and potential colonization. Deep Sea Research Part II 54: 2729–2747.CrossRefGoogle Scholar
  21. Jennings, R. M., A. Bucklin & A. Pierrot-Bults, 2010. Barcoding of arrow worms (Phylum Chaetognatha) from three oceans: genetic diversity and evolution within an enigmatic phylum. PLoS ONE 5: 1–7.CrossRefGoogle Scholar
  22. Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.PubMedCrossRefGoogle Scholar
  23. Kosobokova, K. N. & H. J. Hirche, 2009. Biomass of zooplankton in the eastern Arctic Ocean – a baseline study. Progress in Oceanography 82: 265–280.CrossRefGoogle Scholar
  24. Kosobokova, K. N. & R. R. Hopcroft, 2011. Patterns of zooplankton diversity through the depths of the Arctic’s central basins. Marine Biodiversity 41: 29–50.CrossRefGoogle Scholar
  25. Kulagin, D. N., A. N. Stupnikova, T. V. Neretina & N. S. Mugue, 2011. Genetic diversity of Eukrohnia hamata (Chaetognatha) in the South Atlantic: analysis of gene mtCO1. Invertebrate Zoology 8: 127–136. [in Russian].Google Scholar
  26. Librado, P. & J. Rozas, 2009. DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25: 1451–1452.PubMedCrossRefGoogle Scholar
  27. Miyamoto, H., R. J. Machida & S. Nishida, 2010. Genetic diversity and cryptic speciation of the deep sea chaetognath Caecosagitta macrocephala (Fowler, 1904). Deep-Sea Research Part II 57: 2211–2219.CrossRefGoogle Scholar
  28. Nei, M., 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.Google Scholar
  29. Nei, M. & S. Kumar, 2000. Molecular Evolution and Phylogenetics. Oxford University Press, New York.Google Scholar
  30. Orsi, A. H., T. Whitworth & W. D. Nowlin Jr., 1995. On the meridional extent and fronts of the Antarctic Circumpolar Current. Deep-Sea Research Part I 42: 641–673.CrossRefGoogle Scholar
  31. Palumbi, S. R., 1992. Marine speciation on a small planet. Trends in Ecology and Evolution 7: 114–118.PubMedCrossRefGoogle Scholar
  32. Palumbi, S. R., F. Cipriano & M. P. Hare, 2001. Predicting nuclear gene coalescence from mitochondrial data: the three-times rule. Evolution 55: 859–868.PubMedCrossRefGoogle Scholar
  33. Papadopoulos, L. N., K. T. C. A. Peijnenburg & P. C. Luttikhuizen, 2005. Phylogeography of the calanoid copepods Calanus helgolandicus and C. euxinus suggests Pleistocene divergences between Atlantic, Mediterranean, and Black Sea populations. Marine Biology 147: 1353–1365.CrossRefGoogle Scholar
  34. Patterson, S. L. & T. Whitworth, 1989. Physical Oceanography. Antarctic Sector of the Pacific. Elsevier Oceanography Series 51: 55–93.CrossRefGoogle Scholar
  35. Peijnenburg, K., E. K. van Haastrecht & C. Fauvelot, 2005. Present day genetic composition suggests contrasting demographic histories of two dominant chaetognaths of the North-East Atlantic, Sagitta elegans and S. setosa. Marine Biology 147: 1279–1289.CrossRefGoogle Scholar
  36. Peijnenburg, K., C. Fauvelot, A. J. Breeuwer & S. Menken, 2006. Spatial and temporal genetic structure of the planktonic Sagitta setosa (Chaetognatha) in European seas as revealed by mitochondrial and nuclear DNA markers. Molecular Ecology 15: 3319–3338.PubMedCrossRefGoogle Scholar
  37. Pierrot-Bults, A. C., 1997. Biological diversity in oceanic macrozooplankton: more than counting species. In Ormond, R. F. G., J. D. Gage & J. D. Angel (eds), Marine Biodiversity: Patterns and Processes. Cambridge University Press, New York: 69–93.CrossRefGoogle Scholar
  38. Pingree, R. D., C. Garcia-Soto & B. Sinha, 1999. Position and structure of the Subtropical/Azores Front region from combined Lagrangian and remote sensing (IR/altimeter/SeaWiFS) measurements. Journal of the Marine Biological Association of the UK 79: 769–792.CrossRefGoogle Scholar
  39. Ronquist, F. & J. P. Huelsenbeck, 2003. MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.PubMedCrossRefGoogle Scholar
  40. Rudels, B., P. Jones, L. Anderson & G. Kattner, 1994. On the intermediate depth waters of the Arctic Ocean. In: Johannessen, O. M., R. D. Muench & J. E. Overland (eds), The Polar Oceans and Their Role in Shaping the Global Environment. Geophysical Monograph Series 85: 33–46.Google Scholar
  41. Tajima, F., 1989. Statistical methods to test for nucleotide mutation hypothesis by DNA polymorphism. Genetics 123: 585–595.PubMedGoogle Scholar
  42. Tamura, K., D. Peterson, N. Peterson, G. Stecher, M. Nei & S. Kumar, 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution 28: 2731–2739.PubMedCrossRefGoogle Scholar
  43. Tomczak, M. & J. S. Godfrey, 2003. Regional Oceanography: An Introduction. Daya Publishing House, Delhi.Google Scholar
  44. Wang, L. & T. Jiang, 1994. On the complexity of multiple sequence alignment. Journal of Computational Biology 1: 337–348.PubMedCrossRefGoogle Scholar
  45. Waugh, J., 2007. DNA barcoding in animal species: progress, potential and pitfalls. BioEssays 29: 188–197.PubMedCrossRefGoogle Scholar
  46. Zane, L., L. Ostellari, L. Maccatrozzo, L. Bargelloni, J. Cuzin-Roudy, F. Buchholz & T. Patarnello, 2000. Genetic differentiation in a pelagic crustacean (Meganyctiphanes norvegica: Euhausiacea) from the North East Atlantic and the Mediterranean Sea. Marine Biology 136: 191–199.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Dmitry N. Kulagin
    • 1
  • Alexandra N. Stupnikova
    • 1
  • Tatyana V. Neretina
    • 2
  • Nikolai S. Mugue
    • 3
    • 4
  1. 1.P.P. Shirshov Institute of OceanologyRussian Academy of ScienceMoscowRussia
  2. 2.N.A. Pertsov White Sea Biological Station of the Moscow State UniversityBiological Faculty of Moscow UniversityMoscowRussia
  3. 3.Russian Federal Research Institute of Fisheries and OceanographyMoscowRussia
  4. 4.N.K. Koltzov Institute of Developmental BiologyRussian Academy of ScienceMoscowRussia

Personalised recommendations