Trophic niche partitioning in communities of African annual fish: evidence from stable isotopes

Abstract

Annual killifish of the genus Nothobranchius often co-occur in temporary savannah pools. Their space- and time-limited environment does not allow for any substantial habitat or temporal segregation. Coexisting species are therefore predicted to have well separated trophic niches to avoid intense food competition. Although in a previous “snapshot” study using stomach content analysis (SCA), the trophic niches of three sympatric species (N. furzeri, N. orthonotus, and N. pienaari) were found to vary among species, the difference was relatively weak and inconsistent across different sites. Here, we used the time-integrative capacity of stable isotope analysis to test whether the trophic niches of sympatric Mozambican Nothobranchius are more distinct over a long-term period. Analysis of carbon and nitrogen stable isotopes separated the trophic niche and trophic position of N. pienaari but failed to find any difference between N. furzeri/N. kadleci and N. orthonotus. No segregation was found at the sites with low prey diversity. In contrast, SCA identified N. orthonotus as the species with the most distinct trophic niche. We discuss the effect of prey diversity and different sensitivities of stomach content and stable isotope analysis in general and conclude that the trophic niches of the three sympatric Nothobranchius species are well separated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3

References

  1. Allan, D. G., M. T. Seaman & M. Kaletja, 1995. Endorheic pans of South Africa. In Cowan, G. I. (ed.), Wetlands of South Africa. Department of Environmental Affairs and Tourism, Pretoria: 75–101.

    Google Scholar 

  2. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.

    Google Scholar 

  3. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2004. Permanova+ for Primer: Guide to Software and Statistical Methods. PRIMER-R, Plymouth, UK.

    Google Scholar 

  4. Bearhop, S., C. E. Adams, S. Waldron, R. A. Fuller & H. Macleod, 2004. Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73: 1007–1012.

    Article  Google Scholar 

  5. Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Science 93: 10844–10847.

    Article  CAS  Google Scholar 

  6. Curry-Lindahl, K., 1956. On the ecology, feeding behaviour and territoriality of the African lungfish, Protopterus aethiopicus Heckel. Arkiv für Zoologi 9: 479–497.

    Google Scholar 

  7. Davis, A. M., M. L. Blanchette, B. J. Pusey, T. D. Jardine & R. G. Pearson, 2012. Gut content and stable isotope analyses provide complementary understanding of ontogenetic dietary shifts and trophic relationships among fishes in a tropical river. Freshwater Biology 57: 2156–2172.

    Article  CAS  Google Scholar 

  8. DeNiro, M. J. & S. Epstein, 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197: 261–263.

    PubMed  Article  CAS  Google Scholar 

  9. Dorn, A., E. Ng’oma, K. Janko, K. Reichwald, M. Polačik, M. Platzer, A. Cellerino & M. Reichard, 2011. Phylogeny, genetic variability and colour polymorphism of an emerging animal model: the short-lived annual Nothobranchius fishes from southern Mozambique. Molecular Phylogenetics and Evolution 61: 739–749.

    PubMed  Article  CAS  Google Scholar 

  10. Ferreiro, N., C. Feijoó, A. Giorgi & L. Leggieri, 2011. Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in Pampean stream. Hydrobiologia 664: 199–211.

    Article  Google Scholar 

  11. Frost, S., 1971. Evaluation of kicking technique for sampling stream bottom fauna. Canadian Journal of Zoology 49: 167–173.

    Article  Google Scholar 

  12. Gause, G. F., 1934. The Struggle for Existence. Williams & Wilkins, Baltimore.

    Google Scholar 

  13. Kiljunen, M., J. Grey, T. Sinisalo, C. Harrod, H. Immonen & R. I. Jones, 2006. A revised model for lipid normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. Journal of Applied Ecology 43: 1213–1222.

    Article  CAS  Google Scholar 

  14. Laufer, G., M. Arim, M. Loureiro, J. M. Pineiro-Guerra, S. Clavijo-baquet & C. Fagúndez, 2009. Diet of four annual killifishes: an intra and interspecific comparison. Neotropical Ichthyology 7: 77–86.

    Article  Google Scholar 

  15. Mantel, S. K., M. Salas & D. Dudgeon, 2004. Foodweb structure in a tropical Asian forest stream. Journal of the North American Benthological Society 23: 728–755.

    Article  Google Scholar 

  16. McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.

    Article  CAS  Google Scholar 

  17. Meintjes, S., 1996. Seasonal changes in the invertebrate community of small shallow ephemeral pans at Bain’s Vlei, South Africa. Hydrobiologia 317: 51–64.

    Article  Google Scholar 

  18. Nagelkerken, I., G. van der Velde, S. L. Wartenbergh, M. M. Nugues & M. S. Pratchett, 2009. Cryptic dietary components reduce dietary overlap among sympatric butterflyfishes (Chaetodontidae). Journal of Fish Biology 75: 1123–1143.

    PubMed  Article  CAS  Google Scholar 

  19. Perga, M. E. & D. Gerdeaux, 2005. “Are fish what they eat” all year round? Oecologia 14: 598–606.

    Article  Google Scholar 

  20. Polačik, M. & M. Reichard, 2010. Diet overlap among three sympatric African annual killifish species (Nothobranchius spp.) from Mozambique. Journal of Fish Biology 77: 754–768.

    PubMed  Google Scholar 

  21. Polačik, M. & M. Reichard, 2011. Asymmetric reproductive isolation between two sympatric annual killifish with extremely short lifespans. PLoS ONE 6: e22684.

    PubMed  Article  Google Scholar 

  22. Polačik, M., M. T. Donner & M. Reichard, 2011. Age structure of annual Nothobranchius fishes in Mozambique: is there a hatching synchrony? Journal of Fish Biology 78: 796–809.

    PubMed  Article  Google Scholar 

  23. Reichard, M., 2010. Nothobranchius kadleci (Cyprinodontiformes: Nothobranchiidae), a new species of annual killifish from central Mozambique. Zootaxa 2332: 49–60.

    Google Scholar 

  24. Reichard, M., M. Polačik & O. Sedláček, 2009. Distribution, colour polymorphism and habitat use of the African killifish Nothobranchius furzeri, the vertebrate with the shortest life span. Journal of Fish Biology 74: 198–212.

    PubMed  Article  CAS  Google Scholar 

  25. Schiesari, L., E. E. Werner & G. W. Kling, 2009. Carnivory and resource-based niche differentiation in anuran larvae: implications for food web and experimental ecology. Freshwater Biology 54: 572–586.

    Article  Google Scholar 

  26. Sitnikova, T., S. I. Kiyashko, N. Maximova, G. V. Pomazkina, P. Roepstorf, E. Wada & E. Michel, 2012. Resource partitioning in endemic species of Baikal gastropods indicated by gut contents, stable isotopes and radular morphology. Hydrobiologia 682: 75–90.

    Article  CAS  Google Scholar 

  27. Syväranta, J., S. Vesala, M. Rask, J. Ruuhijärvi & R. Jones, 2008. Evaluating the utility of stable isotope analyses of archived freshwater sample materials. Hydrobiologia 600: 121–130.

    Article  Google Scholar 

  28. Tieszen, L. L., T. W. Boutton, K. G. Tesdahl & N. A. Slade, 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57: 32–37.

    Article  Google Scholar 

  29. Watters, B. R., 2009. The ecology and distribution of Nothobranchius fishes. Journal of the American Killifish Association 42: 37–76.

    Google Scholar 

  30. Wildekamp, R. H., 2004. A World of Killies: Atlas of the Oviparous Cyprinodontiform Fishes of the World. American Killifish Association, Elyria.

    Google Scholar 

  31. Wilson, J. D., C. T. Winne, M. A. Pilgrim, C. S. Romanek & J. W. Gibbons, 2010. Seasonal variation in terrestrial resource subsidies influences trophic niche width and overlap in two aquatic snake species: a stable isotope approach. Oikos 119: 1161–1171.

    Article  Google Scholar 

Download references

Acknowledgements

Funding came from the Czech Science Foundation, Project P505/11/P646 to M. P. The authors would like to thank three anonymous referees whose comments greatly improved the paper.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Matej Polačik.

Additional information

Handling editor: I.A. Nagelkerken

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Polačik, M., Harrod, C., Blažek, R. et al. Trophic niche partitioning in communities of African annual fish: evidence from stable isotopes. Hydrobiologia 721, 99–106 (2014). https://doi.org/10.1007/s10750-013-1652-0

Download citation

Keywords

  • Nothobranchius
  • Coexistence
  • Niche separation
  • Sympatric
  • Extreme environment
  • Africa