, Volume 721, Issue 1, pp 99–106 | Cite as

Trophic niche partitioning in communities of African annual fish: evidence from stable isotopes

  • Matej PolačikEmail author
  • Chris Harrod
  • Radim Blažek
  • Martin Reichard
Primary Research Paper


Annual killifish of the genus Nothobranchius often co-occur in temporary savannah pools. Their space- and time-limited environment does not allow for any substantial habitat or temporal segregation. Coexisting species are therefore predicted to have well separated trophic niches to avoid intense food competition. Although in a previous “snapshot” study using stomach content analysis (SCA), the trophic niches of three sympatric species (N. furzeri, N. orthonotus, and N. pienaari) were found to vary among species, the difference was relatively weak and inconsistent across different sites. Here, we used the time-integrative capacity of stable isotope analysis to test whether the trophic niches of sympatric Mozambican Nothobranchius are more distinct over a long-term period. Analysis of carbon and nitrogen stable isotopes separated the trophic niche and trophic position of N. pienaari but failed to find any difference between N. furzeri/N. kadleci and N. orthonotus. No segregation was found at the sites with low prey diversity. In contrast, SCA identified N. orthonotus as the species with the most distinct trophic niche. We discuss the effect of prey diversity and different sensitivities of stomach content and stable isotope analysis in general and conclude that the trophic niches of the three sympatric Nothobranchius species are well separated.


Nothobranchius Coexistence Niche separation Sympatric Extreme environment Africa 



Funding came from the Czech Science Foundation, Project P505/11/P646 to M. P. The authors would like to thank three anonymous referees whose comments greatly improved the paper.


  1. Allan, D. G., M. T. Seaman & M. Kaletja, 1995. Endorheic pans of South Africa. In Cowan, G. I. (ed.), Wetlands of South Africa. Department of Environmental Affairs and Tourism, Pretoria: 75–101.Google Scholar
  2. Anderson, M. J., 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26: 32–46.Google Scholar
  3. Anderson, M. J., R. N. Gorley & K. R. Clarke, 2004. Permanova+ for Primer: Guide to Software and Statistical Methods. PRIMER-R, Plymouth, UK.Google Scholar
  4. Bearhop, S., C. E. Adams, S. Waldron, R. A. Fuller & H. Macleod, 2004. Determining trophic niche width: a novel approach using stable isotope analysis. Journal of Animal Ecology 73: 1007–1012.CrossRefGoogle Scholar
  5. Cabana, G. & J. B. Rasmussen, 1996. Comparison of aquatic food chains using nitrogen isotopes. Proceedings of the National Academy of Science 93: 10844–10847.CrossRefGoogle Scholar
  6. Curry-Lindahl, K., 1956. On the ecology, feeding behaviour and territoriality of the African lungfish, Protopterus aethiopicus Heckel. Arkiv für Zoologi 9: 479–497.Google Scholar
  7. Davis, A. M., M. L. Blanchette, B. J. Pusey, T. D. Jardine & R. G. Pearson, 2012. Gut content and stable isotope analyses provide complementary understanding of ontogenetic dietary shifts and trophic relationships among fishes in a tropical river. Freshwater Biology 57: 2156–2172.CrossRefGoogle Scholar
  8. DeNiro, M. J. & S. Epstein, 1977. Mechanism of carbon isotope fractionation associated with lipid synthesis. Science 197: 261–263.PubMedCrossRefGoogle Scholar
  9. Dorn, A., E. Ng’oma, K. Janko, K. Reichwald, M. Polačik, M. Platzer, A. Cellerino & M. Reichard, 2011. Phylogeny, genetic variability and colour polymorphism of an emerging animal model: the short-lived annual Nothobranchius fishes from southern Mozambique. Molecular Phylogenetics and Evolution 61: 739–749.PubMedCrossRefGoogle Scholar
  10. Ferreiro, N., C. Feijoó, A. Giorgi & L. Leggieri, 2011. Effects of macrophyte heterogeneity and food availability on structural parameters of the macroinvertebrate community in Pampean stream. Hydrobiologia 664: 199–211.CrossRefGoogle Scholar
  11. Frost, S., 1971. Evaluation of kicking technique for sampling stream bottom fauna. Canadian Journal of Zoology 49: 167–173.CrossRefGoogle Scholar
  12. Gause, G. F., 1934. The Struggle for Existence. Williams & Wilkins, Baltimore.CrossRefGoogle Scholar
  13. Kiljunen, M., J. Grey, T. Sinisalo, C. Harrod, H. Immonen & R. I. Jones, 2006. A revised model for lipid normalizing δ13C values from aquatic organisms, with implications for isotope mixing models. Journal of Applied Ecology 43: 1213–1222.CrossRefGoogle Scholar
  14. Laufer, G., M. Arim, M. Loureiro, J. M. Pineiro-Guerra, S. Clavijo-baquet & C. Fagúndez, 2009. Diet of four annual killifishes: an intra and interspecific comparison. Neotropical Ichthyology 7: 77–86.CrossRefGoogle Scholar
  15. Mantel, S. K., M. Salas & D. Dudgeon, 2004. Foodweb structure in a tropical Asian forest stream. Journal of the North American Benthological Society 23: 728–755.CrossRefGoogle Scholar
  16. McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102: 378–390.CrossRefGoogle Scholar
  17. Meintjes, S., 1996. Seasonal changes in the invertebrate community of small shallow ephemeral pans at Bain’s Vlei, South Africa. Hydrobiologia 317: 51–64.CrossRefGoogle Scholar
  18. Nagelkerken, I., G. van der Velde, S. L. Wartenbergh, M. M. Nugues & M. S. Pratchett, 2009. Cryptic dietary components reduce dietary overlap among sympatric butterflyfishes (Chaetodontidae). Journal of Fish Biology 75: 1123–1143.PubMedCrossRefGoogle Scholar
  19. Perga, M. E. & D. Gerdeaux, 2005. “Are fish what they eat” all year round? Oecologia 14: 598–606.CrossRefGoogle Scholar
  20. Polačik, M. & M. Reichard, 2010. Diet overlap among three sympatric African annual killifish species (Nothobranchius spp.) from Mozambique. Journal of Fish Biology 77: 754–768.PubMedGoogle Scholar
  21. Polačik, M. & M. Reichard, 2011. Asymmetric reproductive isolation between two sympatric annual killifish with extremely short lifespans. PLoS ONE 6: e22684.PubMedCrossRefGoogle Scholar
  22. Polačik, M., M. T. Donner & M. Reichard, 2011. Age structure of annual Nothobranchius fishes in Mozambique: is there a hatching synchrony? Journal of Fish Biology 78: 796–809.PubMedCrossRefGoogle Scholar
  23. Reichard, M., 2010. Nothobranchius kadleci (Cyprinodontiformes: Nothobranchiidae), a new species of annual killifish from central Mozambique. Zootaxa 2332: 49–60.Google Scholar
  24. Reichard, M., M. Polačik & O. Sedláček, 2009. Distribution, colour polymorphism and habitat use of the African killifish Nothobranchius furzeri, the vertebrate with the shortest life span. Journal of Fish Biology 74: 198–212.PubMedCrossRefGoogle Scholar
  25. Schiesari, L., E. E. Werner & G. W. Kling, 2009. Carnivory and resource-based niche differentiation in anuran larvae: implications for food web and experimental ecology. Freshwater Biology 54: 572–586.CrossRefGoogle Scholar
  26. Sitnikova, T., S. I. Kiyashko, N. Maximova, G. V. Pomazkina, P. Roepstorf, E. Wada & E. Michel, 2012. Resource partitioning in endemic species of Baikal gastropods indicated by gut contents, stable isotopes and radular morphology. Hydrobiologia 682: 75–90.CrossRefGoogle Scholar
  27. Syväranta, J., S. Vesala, M. Rask, J. Ruuhijärvi & R. Jones, 2008. Evaluating the utility of stable isotope analyses of archived freshwater sample materials. Hydrobiologia 600: 121–130.CrossRefGoogle Scholar
  28. Tieszen, L. L., T. W. Boutton, K. G. Tesdahl & N. A. Slade, 1983. Fractionation and turnover of stable carbon isotopes in animal tissues: implications for δ13C analysis of diet. Oecologia 57: 32–37.CrossRefGoogle Scholar
  29. Watters, B. R., 2009. The ecology and distribution of Nothobranchius fishes. Journal of the American Killifish Association 42: 37–76.Google Scholar
  30. Wildekamp, R. H., 2004. A World of Killies: Atlas of the Oviparous Cyprinodontiform Fishes of the World. American Killifish Association, Elyria.Google Scholar
  31. Wilson, J. D., C. T. Winne, M. A. Pilgrim, C. S. Romanek & J. W. Gibbons, 2010. Seasonal variation in terrestrial resource subsidies influences trophic niche width and overlap in two aquatic snake species: a stable isotope approach. Oikos 119: 1161–1171.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Matej Polačik
    • 1
    Email author
  • Chris Harrod
    • 2
    • 3
  • Radim Blažek
    • 1
  • Martin Reichard
    • 1
  1. 1.Institute of Vertebrate BiologyAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  2. 2.School of Biological SciencesQueen’s UniversityBelfastUK
  3. 3.Instituto de Investigaciones OceanológicasUniversidad de AntofagastaAntofagastaChile

Personalised recommendations