, Volume 721, Issue 1, pp 45–55 | Cite as

Differences in the contributions of dietary water to the hydrogen stable isotope ratios of cultured Atlantic salmon and Arctic charr tissues

  • C. T. Graham
  • S. S. C. Harrison
  • C. Harrod
Primary Research Paper


Hydrogen stable isotopes of animal tissues are well established tracers of migration ecology in terrestrial ecosystems. Recent research has highlighted δ2H as a potential tool in studies of aquatic ecosystems, particularly as a robust tracer for quantifying the importance of allochthonous subsidies. Although the use of δ2H has clear potential, some uncertainties remain, in particular with regard to the contribution of dietary water to consumer δ2H. Here, we quantify the contribution of dietary water to δ2H in two salmonid fishes, Atlantic salmon (Salmo salar L.) and Arctic charr (Salvelinus alpinus L.), reared on diets of known isotopic composition. Furthermore, we examined the capacity of fins (adipose and caudal) to provide a non-lethal means of estimating consumer δ2H. The proportion of deuterium derived from environmental water of all tissue was substantial in both Atlantic salmon (mean = 0.43 ± 0.1 SD) and Arctic charr (mean = 0.48 ± 0.15 SD) but varied considerably between both individuals and tissue type. White muscle proved to be the least variable of the tissues analysed. Although fins proved to be a possible non-destructive substitute, a degree of caution is recommended with their use, as the proportion of dietary water contributing to the deuterium of fins was considerable more variable.


Stable isotope Fish Environmental water Deuterium Hydrogen Consumers Fins 



This work was funded through a grant awarded by Science Foundation Ireland (05/RFP/EEB0055) under the Research Frontier Programme. We would like to thank P. McGovern of Stofinfiskur for use of facilities and R. Doucett of Colarado Pleateau Stable Isotope Laboratory for advice on stable isotopes of hydrogen.


  1. Artmann, U., J. A. Waringer & M. Schager, 2003. Seasonal dynamics of algal biomass and allochthonous input of coarse particulate organic matterin a low-order sandstone stream (Weidlingbach, Lower Austria). Limnologica 33: 77–91.CrossRefGoogle Scholar
  2. Birchall, J., T. C. O’Connell, T. H. E. Heaton & R. E. M. Hedges, 2005. Hydrogen stable isotope ratios in animal body protein reflect trophic level. Journal of Animal Ecology 74: 877–881.CrossRefGoogle Scholar
  3. Bowen, G. J., J. R. Ehleringer, L. A. Chesson, E. Stange & T. E. Cerling, 2007. Stable isotope ratios of tap water in the contiguous United States. Water Resources Research 43:W03419.Google Scholar
  4. Church, M. R., J. L. Ebersole, K. M. Rensmeyer, R. B. Couture, F. T. Barrows & D. L. G. Noakes, 2009. Mucus: a new tissue fraction for rapid determination of fish diet switching using stable isotope analysis. Canadian Journal of Fisheries and Aquatic Sciences 66: 1–5.CrossRefGoogle Scholar
  5. Cloe, W. W. & G. C. Garman, 1996. The energetic importance of terrestrial arthropod inputs in three warm-water stream. Freshwater Biology 36: 104–114.CrossRefGoogle Scholar
  6. Cole, J. J., S. R. Carpenter, J. Kitchell, M. L. Pace, C. T. Solomon & B. Weidel, 2011. Strong evidence for terrestrial support of zooplankton in small lakes based on stable isotopes of carbon, nitrogen, and hydrogen. Proceedings of the National Academy of Sciences 108: 1975–1980. doi: 10.1073/pnas.1012807108.CrossRefGoogle Scholar
  7. DeNiro, M. J. & S. Epstein, 1981. Hydrogen isotope ratios of mouse tissues are influenced by a variety of factors other than diet. Science 214: 1374–1376.PubMedCrossRefGoogle Scholar
  8. Dineen, G., S. S. C. Harrison & P. S. Giller, 2007. Diet partitioning in sympatric Atlantic salmon and brown trout in streams with contrasting riparian vegetation. Journal of Fish Biology 71: 17–38.CrossRefGoogle Scholar
  9. Doucett, R., D. R. Barton, K. R. A. Guiguer, G. Power & R. J. Drimmie, 1996a. Comment: critical examination of stable isotope analysis as a means for tracing carbon pathways in stream ecosystem. Canadian Journal of Fisheries and Aquatic Science 53: 1913–1915.CrossRefGoogle Scholar
  10. Doucett, R., G. Power, D. R. Barton, R. J. Drimmie & R. A. Cunjak, 1996b. Stable isotope analysis of nutrient pathways leading to Atlantic salmon. Canadian Journal of Fisheries and Aquatic Science 53: 2058–2066.CrossRefGoogle Scholar
  11. Doucett, R. R., J. C. Marks, D. W. Blinn, M. Caron & B. A. Hungate, 2007. Measuring terrestrial subsidies to aquatic food webs using stable isotopes of hydrogen. Ecology 88: 1587–1592.PubMedCrossRefGoogle Scholar
  12. Ehleringer, J. R., G. J. Bowen, L. A. Chesson, A. G. West, D. W. Podlesak & T. E. Cerling, 2008. Hydrogen and oxygen isotope ratios in human hair are related to geography. Proceedings of the Natural Academy of Sciences 105: 2788–2793.CrossRefGoogle Scholar
  13. Estep, M. F. & H. Dabrowski, 1980. Tracing food webs with stable hydrogen isotopes. Science 209: 1537–1538.PubMedCrossRefGoogle Scholar
  14. Estep, M. F. & T. C. Hoering, 1981. Stable isotope fractionations during autotrophic and mixotrophic growth of algae. Plant Physiology 67: 474–477.PubMedCrossRefGoogle Scholar
  15. Finlay, J. C., S. Khandwala & M. G. Power, 2002. Spatial scales of carbon flow in a river food web. Ecology 83: 1845–1859.CrossRefGoogle Scholar
  16. Finlay, J. C., R. R. Doucett & C. McNeely, 2010. Tracing energy flow in stream food webs using stable isotopes of hydrogen. Freshwater Biology 55: 941–951.CrossRefGoogle Scholar
  17. France, R. L., 1994. Critical examination of stable isotope analysis as a means for tracing carbon pathways in stream ecosystems. Canadian Journal of Fisheries and Aquatic Science 52: 651–656.CrossRefGoogle Scholar
  18. Grey, J. & R. I. Jones, 2001. Seasonal changes in the importance of the source organic matter to the diet of zooplankton in Loch Ness, as indicated by stable isotope analysis. Limnology and Oceanography 46: 505–513.CrossRefGoogle Scholar
  19. Grey, J., C. T. Graham, J. R. Britton & C. Harrod, 2009. Stable isotope analysis of archived roach (Rutilis rutilis) scales for retrospective studies study of shallow lake responses to nutrient reduction. Freshwater Biology 54: 1663–1670.CrossRefGoogle Scholar
  20. Hanisch, J. R., W. M. Tonn, C. A. Paszkowski & G. J. Scrimgeour, 2010. δ13C and δ15N signatures in muscle and fin tissues: nonlethal sampling methods for stable isotope analysis of salmonids. North American Journal of Fisheries Management 30: 1–11.CrossRefGoogle Scholar
  21. Hobson, K. A., L. Atwell & L. I. Wassenaar, 1999. Influence of drinking water and diet on the stable-hydrogen isotope ratios of animal tissues. Proceedings of the Natural Academy of Sciences 96: 8003–8006.CrossRefGoogle Scholar
  22. Jardine, T. D., M. A. Gray, S. M. McWilliam & R. A. Cunjak, 2005. Stable isotope variability in tissues of temperate stream fishes. Transactions of the American Fisheries Society 134: 1103–1110.CrossRefGoogle Scholar
  23. Jardine, T. D., K. A. Kidd & R. Cunjak, 2009. An evaluation of deuterium as a food source tracer in temperate streams of eastern Canada. Journal of the North American Benthological Society 28: 885–893.CrossRefGoogle Scholar
  24. Jardine, T. D., R. J. Hunt, B. J. Pusey & S. E. Bunn, 2011. A non-lethal sampling method for stable carbon and nitrogen isotope studies of tropical fishes. Marine and Freshwater Research 62: 83–90. doi: 10.1071/MF10211.CrossRefGoogle Scholar
  25. Jones, R. I., J. Grey, C. Quarmby & D. Sleep, 1998. An assessment using stable isotopes of the importance of allochthonous organic carbon sources to the pelagic food web of Lough Ness. Proceedings of The Royal Society B 265: 105–111.CrossRefGoogle Scholar
  26. Kawaguchi, Y. & S. Nakano, 2001. Contribution of terrestrial invertebrates to the annual resource budget for salmonids in forest and grassland reaches of a headwater stream. Freshwater Biology 46: 303–316.CrossRefGoogle Scholar
  27. Keeley, J. E. & D. R. Sandquist, 1992. Carbon: freshwater plants. Plant, Cell and Environment 15: 1021–1035. doi: 10.1111/j.1365-3040.1992.tb01653.x.CrossRefGoogle Scholar
  28. Kelly, M. H., W. G. Hagar, T. D. Jardine & R. A. Cunjak, 2006. Nonlethal sampling of sunfish and slimy sculpin for stable isotope analysis: how scale and fin tissue compare with muscle tissue. North American Journal of Fisheries Management 26: 921–925.CrossRefGoogle Scholar
  29. Kiljunen, M., J. Grey, T. Sinisalo, C. Harrod, H. Immonen & R. I. Jones, 2006. A revised model for lipid-normalisation of carbon stable isotope values from aquatic organisms, and implications for the use of isotope mixing models to evaluate diets of consumers. Journal of Animal Ecology 43: 1213–1222.CrossRefGoogle Scholar
  30. Kreuzer-Martin, H. W., M. J. Lott, J. Dorigan & J. R. Ehleringer, 2003. Microbes forensics: oxygen and hydrogen stable isotope ratios in Bacillus subtilis cells and spores. Proceedings of the Natural Academy of Sciences 100: 815–819.CrossRefGoogle Scholar
  31. Macko, S. A. & M. F. Estep, 1983. Stable hydrogen isotope analysis of foodwebs on laboratory and field populations of marine amphipods. Journal of Experimental Marine Biology and Ecology 72: 243–249.CrossRefGoogle Scholar
  32. Malej, A., J. Faganeli & J. Pezdic, 1993. Stable isotope and biochemical fractionation in the marine pelagic food chain: the jellyfish Pelagia noctiluca and net zooplankton. Marine Biology 116: 565–570.CrossRefGoogle Scholar
  33. McCutchan, J. H., W. M. Lewis, C. Kendall & C. C. McGrath, 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen and sulphur. Oikos 102: 378–390.CrossRefGoogle Scholar
  34. Nakano, S., K. D. Fausch & S. Kitano, 1999a. Flexible niche partition via a foraging mode shift: a proposed mechanism for coexistence in stream-dwelling charrs. Journal of Animal Ecology 68: 1079–1092.CrossRefGoogle Scholar
  35. Nakano, S., Y. Kawaguchi, Y. Taniguchi, H. Mayasaka, Y. Shibata, H. Urabe & N. Kuhara, 1999b. Selective foraging on terrestrial invertebrates by rainbow trout in a forested headwater stream in northern Japan. Ecological Research 14: 351–360.CrossRefGoogle Scholar
  36. Nakano, S., H. Miyasaka & N. Kuhara, 1999c. Terrestrial–aquatic linkages: riparian arthropod inputs alter trophic cascades in a stream food web. Ecology 80: 2435–2441.Google Scholar
  37. O’Brien, D. M. & M. J. Wooler, 2007. Tracking human travel using stable oxygen and hydrogen isotope analyses of hair and urine. Rapid Communications in Mass Spectrometry 21: 2411–2430.Google Scholar
  38. Pelletier, D., P. U. Blier, J.-D. Dutil & H. Guderley, 1995. How should enzyme activities be used in fish growth studies? Journal of Experimental Biology 198: 1493–1497.PubMedGoogle Scholar
  39. Phillips, D. L. & J. W. Gregg, 2001. Uncertainty in source partitioning using stable isotopes. Oecologia 127: 171–179.CrossRefGoogle Scholar
  40. Phillips, D. L. & J. W. Gregg, 2003. Source partitioning using stable isotopes: coping with too many sources. Oecologia 136: 261–269.PubMedCrossRefGoogle Scholar
  41. Pinnegar, J. K. & V. C. Polunin, 1999. Differential fractionation of δ13C and δ15N among fish tissues: implications for the study of trophic interactions. Functional Ecology 13: 225–231.CrossRefGoogle Scholar
  42. Post, D. M., C. A. Layman, D. A. Arrington, G. Takimoto, J. Quattrochi & C. G. Montana, 2007. Getting to the fat of the matter: models, methods and assumptions for dealing with lipids in stable isotope analyses. Oecologia 152: 179–189.PubMedCrossRefGoogle Scholar
  43. Rounick, J. S. & B. J. Hicks, 1985. The stable carbon isotope ratios of fish and their invertebrate prey in four New Zealand rivers. Freshwater Biology 15: 207–214.CrossRefGoogle Scholar
  44. Rounick, J. S., M. J. Winterbourn & G. L. Lyon, 1982. Differential utilization of allochthonous and autochthonous inputs by aquatic invertebrates in some New Zealand streams: a stable carbon isotope study. Oikos 39: 191–198.CrossRefGoogle Scholar
  45. Sharp, Z. D., V. Atudorei, H. O. Panarello, J. Fernandez & C. Douthitt, 2003. Hydrogen isotope systematics of hair: archeological and forensic applications. Journal of Archeological Sciences 30: 1709–1716.CrossRefGoogle Scholar
  46. Smith, B. N. & S. Epstein, 1970. Biochemistry of the stable isotopes of hydrogen and carbon in salt marsh biota. Plant Physiology 46: 738–742.PubMedCrossRefGoogle Scholar
  47. Solomon, C., R. R. Doucett, M. Pace, N. Preston, L. Smith & B. Weidel, 2009. The influence of dietary water on the hydrogen stable isotope ratio of aquatic consumers. Oecologia 161: 313–324.PubMedCrossRefGoogle Scholar
  48. Soto, D. X., L. I. Wassenaar, K. A. Hobson & J. Catalan, 2011. Effects of size and diet on stable hydrogen isotope values (δD) in fish: implications for tracing origins of individuals and their food sources. Canadian Journal of Fisheries and Aquatic Sciences 68: 2011–2019.CrossRefGoogle Scholar
  49. Soto, D. X., L. I. Wassenaar & K. A. Hobson, 2013. Stable hydrogen and oxygen isotopes in aquatic food webs are tracers of diet and provenance. Functional Ecology 27: 535–543. doi: 10.1111/1365-2435.12054.CrossRefGoogle Scholar
  50. Suzuki, K. W., A. Kasai, K. Nakayama & M. Tanaka, 2005. Differential isotope enrichment and half-life among tissues in Japanese temperate bass (Lateolabrax japonicus) juveniles: implications for analyzing migration. Canadian Journal of Fisheries and Aquatic Science 62: 671–678.CrossRefGoogle Scholar
  51. Thorp, J. H. & M. D. Delong, 2002. Dominance of autochthonous autotrophic carbon in food webs of heterotrophic rivers. Oikos 96: 543–550.CrossRefGoogle Scholar
  52. Vannote, R. L., G. W. Minshall, K. W. Cummins, J. R. Sedell & C. E. Cushing, 1980. The river continuum concept. Canadian Journal of Fishes and Aquatic Sciences 37: 130–137.CrossRefGoogle Scholar
  53. Wang, Y. V., D. M. O’Brien, J. Jenson, D. Francis & M. J. Wooler, 2009. The influence of diet and water on the stable oxygen and hydrogen isotope composition of Chironomidae (Diptera) with paleoecological implications. Oecologia 160: 225–233.PubMedCrossRefGoogle Scholar
  54. Wassenaar, L. I. & K. A. Hobson, 2003. Comparative equilibration and online technique for determination of non-exchangeable hydrogen of keratins for use in animal migration studies. Isotopes in Environmental and Health Studies 39: 211–217.PubMedCrossRefGoogle Scholar
  55. Wolf, N., G. J. Bowen & C. Martinez del Rio, 2011. The influence of drinking water on the δD and the δ18O values of house sparrow plasma, blood and feathers. The Journal of Experimental Biology 214: 103.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • C. T. Graham
    • 1
  • S. S. C. Harrison
    • 1
  • C. Harrod
    • 2
    • 3
  1. 1.School of Biological, Earth and Environmental SciencesUniversity College CorkCorkIreland
  2. 2.School of Biological Sciences, Medical Biology CentreQueen’s University BelfastBelfastUK
  3. 3.Instituto de Investigaciones OceanológicasUniversidad de AntofagastaAntofagastaChile

Personalised recommendations