, Volume 718, Issue 1, pp 109–118 | Cite as

Intensive fishing can mediate stronger size-dependent maternal effect in pike (Esox lucius)

  • M. Kotakorpi
  • J. Tiainen
  • M. Olin
  • H. Lehtonen
  • K. Nyberg
  • J. Ruuhijärvi
  • A. Kuparinen
Primary Research Paper


In pike E. lucius L., evidence on maternal effect on reproductive output is mixed. We studied whether older and larger pike females produce eggs and larvae of higher quality (weight, starvation resistance) in three forest lakes in southern Finland. Later, the study lakes were subjected to intensive experimental pike fishing, which we assumed would increase resource availability and lead to higher maternal investment (larger egg size). Length of female pike was positively correlated with the dry weight of eggs and larvae but this relation was dependent on female age. In old females, the effect of female length on egg weight was lower or even negative. Survival analysis showed a positive effect of female length on larval survival time indicating that larvae from larger females are less vulnerable to starvation during the early stage of life. After the intensive pike fishing, the positive effect of female length on egg weight was stronger in all age classes probably due to the released resources. Based on the high quality and amount of reproductive products in large (but not very old) females, they are important for the reproduction of pike populations. This should be considered in fisheries management.


Pike Esox lucius Maternal effects Egg Larvae Reproduction 


  1. Arlinghaus, R., S. Matsumura & U. Dieckmann, 2010. The conservation and fishery benefits of protecting large pike (Esox lucius L.) by harvest regulations in recreational fishing. Biological Conservation 143: 1444–1459.CrossRefGoogle Scholar
  2. Berkeley, S. A., C. Chapman & S. M. Sogard, 2004. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85: 1258–1264.CrossRefGoogle Scholar
  3. Birkeland, C. & P. K. Dayton, 2005. The importance in fishery management of leaving the big ones. Trends in Ecology & Evolution 20: 356–358.CrossRefGoogle Scholar
  4. Casselman, J. M., 1990. Growth and relative size of calcified structures of fish. Transactions of the American Fisheries Society 119: 673–688.CrossRefGoogle Scholar
  5. Chambers, R. C. & W. C. Leggett, 1996. Maternal influences on variation in egg sizes in temperate marine fishes. American Zoologist 36: 180–196.Google Scholar
  6. Cox, D. R., 1972. Regression models and life tables. Journal of the Royal Statistical Society: Series B 34: 187–220.Google Scholar
  7. Craig, J. F., 1996. Pike: Biology and Exploitation. Chapman & Hall, London: 298 pp.CrossRefGoogle Scholar
  8. Desvilettes, C., G. Bourdier & J. C. Breton, 1997. Changes in lipid class and fatty acid composition during development in pike (Esox lucius L) eggs and fry. Fish Physiology and Biochemistry 16: 381–393.CrossRefGoogle Scholar
  9. Edeline, E., S. M. Carlson, L. C. Stige, I. J. Winfield, J. M. Fletcher, B. J. James, T. O. Haugen, L. A. Vøllestad & N. C. Stenseth, 2007. Trait changes in a harvested population are driven by dynamic tug-of-war between natural and harvest selection. Proceedings of the National Academy of Sciences of the United States of America 104: 15799–15804.PubMedCrossRefGoogle Scholar
  10. Einum, S. & I. A. Fleming, 1999. Maternal effects of egg size in brown trout (Salmo trutta): norms of reaction to environmental quality. Proceedings of the Royal Society B 266: 2095–2100.CrossRefGoogle Scholar
  11. Estlander, S., L. Nurminen, M. Olin, M. Vinni, S. Immonen, M. Rask, J. Ruuhijärvi, J. Horppila & H. Lehtonen, 2010. Diet shifts and food selection of perch (Perca fluviatilis) and roach (Rutilus rutilus (L.)) in humic lakes of varying water colour. Journal of Fish Biology 77: 241–256.PubMedCrossRefGoogle Scholar
  12. Frost, W. E. & C. Kipling, 1959. The determination of the age and growth of pike (Esox lucius L.) from scales and opercular bones. Journal du Conseil International pour l’Exploration de la Mer 24: 314–341.CrossRefGoogle Scholar
  13. Garcia, S. M., J. Kolding, J. Rice, M.-J. Rochet, S. Zhou, T. Arimoto, J. E. Beyer, L. Borges, A. Bundy, D. Dunn, E. A. Fulton, M. Hall, M. Heino, R. Law, M. Makino, A. D. Rijnsdorp, F. Simard & A. D. M. Smith, 2012. Reconsidering the consequences of selective fisheries. Science 335: 1045–1047.PubMedCrossRefGoogle Scholar
  14. Grimm, M. P. & M. Klinge, 1996. Pike and some aspects of its dependence on vegetation. In Craig, J. F. (ed.), Pike: Biology and Exploitation. Chapman & Hall, London: 125–126.CrossRefGoogle Scholar
  15. Heyer, C. J., T. J. Miller, F. P. Binkowski, E. M. Caldarone & J. A. Rice, 2001. Maternal effects as a recruitment mechanism in Lake Michigan yellow perch (Perca flavescens). Canadian Journal of Fisheries and Aquatic Sciences 58: 1477–1487.CrossRefGoogle Scholar
  16. Hutchings, J. A. & J. D. Reynolds, 2004. Marine fish population collapses: consequences for recovery and extinction risk. BioScience 54: 297–309.CrossRefGoogle Scholar
  17. Johnston, T. A., M. D. Wiegand, W. C. Leggett, R. J. Pronyk, S. D. Dyal, K. E. Watchorn, S. Kollar & J. M. Casselman, 2007. Hatching success of walleye embryos in relation to maternal and ova characteristics. Ecology of Freshwater Fish 16: 295–306.CrossRefGoogle Scholar
  18. Kamler, E., 2005. Parent-egg-progeny relationships in teleost fishes: an energetics perspective. Reviews in Fish Biology and Fisheries 15: 399–421.CrossRefGoogle Scholar
  19. Kostomarova, A. A., 1959. Biological importance of the phase of mixed nourishment for the development of the fry of the pike (Esox lucius). Rybn. Khox. 8: 25–27 (in Russian, cited in Raat, 1988).Google Scholar
  20. Kostomarova, A. A., 1961. The significance of the stage of mixed feeding for the survival of Esox lucius L. fry. Tr. Soveshch. Ikhtiol. Kom. Akd. Nauk. S.S.S.R. 13: 334–347 (in Russian, cited in. Raat, 1988).Google Scholar
  21. Kotlyarevskaya, N. V., 1969. The hatching process in the pike (Esox lucius, L.). Probl. Ichtyol. 9: 85–95 (in Russian, cited in Raat, 1988).Google Scholar
  22. Kuparinen, A., J. S. Alho, M. Olin & H. Lehtonen, 2012. Estimation of northern pike population sizes via mark-recapture monitoring. Fisheries Management and Ecology 19: 323–332.CrossRefGoogle Scholar
  23. Mehner, T., D. Bauer & H. Schultz, 1998. Early omnivory in age-0 perch (Perca fluviatilis) – a key for understanding long-term manipulated food webs. Verhandlungen des Internationalen Verein Limnologie 26: 2287–2289.Google Scholar
  24. Murry, B. A., J. M. Farrell, K. L. Schulz & M. A. Teece, 2008. The effect of egg size and nutrient content on larval performance: implications to protracted spawning in northern pike (Esox lucius Linnaeus). Hydrobiologia 601: 71–82.CrossRefGoogle Scholar
  25. Nikolsky, G. V., 1974. Theory of Fish Population Dynamics. Moscow: Pishchevaya Promyshlennost (in Russian, cited in Kamler, 2005).Google Scholar
  26. Ojanguren, A. F., F. G. Reyes-Gavilan & F. Brana, 1996. Effects of egg size on offspring development and fitness in brown trout, Salmo trutta L. Aquaculture 147: 9–20.CrossRefGoogle Scholar
  27. Olin, M., M. Vinni, H. Lehtonen, M. Rask, J. Ruuhijärvi, K. Saulamo & P. Ala-Opas, 2010. Environmental factors regulate the effects of roach Rutilus rutilus and pike Esox lucius on perch Perca fluviatilis populations in small boreal forest lakes. Journal of Fish Biology 76: 1277–1293.PubMedCrossRefGoogle Scholar
  28. Olin, M., J. Jutila, H. Lehtonen, M. Vinni, J. Ruuhijärvi, S. Estlander, M. Rask, A. Kuparinen & J. Lappalainen, 2012. Importance of maternal size on the reproductive success of perch (Perca fluviatilis L.) in small forest lakes – implications for fisheries management. Fisheries Management and Ecology 19: 363–374.CrossRefGoogle Scholar
  29. Olsen, E. M., G. R. Lilly, M. Heino, M. J. Morgan, J. Brattey & U. Dieckmann, 2005. Assessing changes in age and size at maturation in collapsing populations of Atlantic cod (Gadus morhua). Canadian Journal of Fisheries and Aquatic Sciences 62: 811–823.CrossRefGoogle Scholar
  30. Pakkasmaa, S., N. Peuhkuri, A. Laurila, H. Hirvonen & E. Ranta, 2001. Female and male contribution to egg size in salmonids. Evolutionary Ecology 15: 143–153.CrossRefGoogle Scholar
  31. Perez, K. & S. B. Munch, 2010. Extreme selection on size in the early lives of fish. Evolution 64: 2450–2457.PubMedGoogle Scholar
  32. Raat, A. J. P., 1988. Synopsis of biological data on the northern pike: Esox lucius Linnaeus, 1758. FAO Fisheries Synopsis No. 30 Rev. 2. Food & Agriculture Org., Rome 178 pp.Google Scholar
  33. Robertsen, G., H. Skoglund & S. Einum, 2013. Offspring size effects vary over fine spatio-temporal scales in Atlantic salmon (Salmo salar). Canadian Journal of Fisheries and Aquatic Sciences 70: 5–12.CrossRefGoogle Scholar
  34. Roff, D. A., 1992. The Evolution of Life Histories: Theory and Analysis. Chapman & Hall, New York: 548 pp.Google Scholar
  35. Scott, B., G. Marteinsdottir & P. Wright, 1999. Potential effects of maternal factors on spawning stock-recruitment relationships under varying fishing pressure. Canadian Journal of Fisheries and Aquatic Sciences 56: 1882–1890.Google Scholar
  36. Sharpe, D. & A. Hendry, 2009. Life history change in commercially exploited fish stocks: an analysis of trends across studies. Evolutionary Applications 2: 260–275.CrossRefGoogle Scholar
  37. Tonn, W. M., J. J. Magnuson, M. Rask & J. Toivonen, 1990. Intercontinental comparison of small-lake fish assemblages: the balance between local and regional processes. American Naturalist 136: 345–375.CrossRefGoogle Scholar
  38. Trippel, E. A., 1995. Age at maturity as a stress indicator in fisheries. BioScience 45: 759–771.CrossRefGoogle Scholar
  39. Venturelli, P. A., C. A. Murphy, B. J. Shuter, T. A. Johnston, P. J. van Coeverden de Groot, P. T. Boag, J. M. Casselman, R. Montgomerie, M. D. Wiegand & W. C. Leggett, 2010. Maternal influences on population dynamics: evidence from an exploited freshwater fish. Ecology 91: 2003–2012.Google Scholar
  40. Wright, R. M. & E. A. Shoesmith, 1988. The reproductive success of pike, Esox lucius: aspects of fecundity, egg density and survival. Journal of Fish Biology 33: 623–636.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • M. Kotakorpi
    • 1
  • J. Tiainen
    • 1
  • M. Olin
    • 1
  • H. Lehtonen
    • 1
  • K. Nyberg
    • 1
  • J. Ruuhijärvi
    • 2
  • A. Kuparinen
    • 3
  1. 1.Department of Environmental Sciences, Aquatic SciencesUniversity of HelsinkiHelsinkiFinland
  2. 2.Finnish Game and Fisheries Research InstituteEvo Fisheries Research StationEvoFinland
  3. 3.Department of Environmental Sciences, Fisheries and Environmental Management GroupUniversity of HelsinkiHelsinkiFinland

Personalised recommendations