, Volume 717, Issue 1, pp 85–108 | Cite as

Structure and functioning of two pelagic communities in the North Chilean Patagonian coastal system

  • Héctor J. Pavés
  • Humberto E. González
  • Villy Christensen
Primary Research Paper


The size composition of primary producers is important for how energy is channeled through a food web and on to the higher trophic levels and eventually to fisheries. To evaluate this, we studied the productive patterns for large (micro) versus small (nano) phytoplankton in two south marine Patagonian ecosystems: The Inner Sea of Chiloe—ISCh and, Moraleda Channel—MCh. We built Ecopath models (EwE), and evaluated the hypothesis that the overall primary productivity—rather than the ratio of large to small primary producers—constitutes an adequate proxy for predicting the amount of secondary and tertiary production and biomass (up to the fisheries). The EwE model included four small-scale fisheries and 36 functional groups. The functioning of both ecosystems was similar but the ecosystem parameters (biomass, energy transfer efficiencies from primary producers, secondary, and tertiary production) were twice as much in the basin with more microphytoplankton biomass. Overall, the hypothesis was rejected, albeit it was possible to highlight the importance of the quality and size spectrum of plankton on the structure of marine ecosystem, and to demonstrate the key role of the microbial loop over traditional food web in the functioning of the carbon biological pump in Patagonia ecosystems.


Ecopath Microbial loop Traditional food web Patagonian coastal system 



We thank our many colleagues who provided the data, information, and constructive input that allowed us to construct the trophic models for the southern coastal system of Chile: Dr. Leonardo Castro and Maria Ines Muñoz (Universidad de Concepción); Dr. Giovanni Daneri (CIEP); and Dr. Edwin Niklisheck, Dr. Ricardo Giesecke, Cecilia Torres (M.S.), Eduardo Menschel, Nicolás Sánchez, and María José Calderón (Universidad Austral de Chile). The authors thank the suggestions and comments of two anonymous reviewers that substantially improved the original version of the MS. The authors are indebted to all persons who have been working on the development of the Ecopath approach since the early 1980s, especially Carl Walters from Fisheries Centre (University of British Columbia, Vancouver, Canada). Principal author (HP) acknowledges the assistance provided by Jeroen Steenbeek, Shawn Booth, and Andrés Cisneros during his postdoctorate research at the Fisheries Centre (UBC). This study was funded by the CIMAR-Fjords Program (grants 9, 12, and 13); FONDAP-COPAS No. 15010007 Etapa II; Programa Financiamiento Basal PFB-31/2007; and FONDECYT No. 1080187, and by the office of Research and Development (Universidad Austral de Chile) (DID-S-2010-45). HJP was supported by BECASCHILE Postdoctorate Program 2010, the Fisheries Centre of University of British Columbia, Vancouver, Canada, and the Postdoctorate Program 2011—Fondecyt No. 3120100 during the conduction of this research. VC acknowledges support from the Nippon Foundation—UBC Nereus Program and NSERC.

Supplementary material

10750_2013_1576_MOESM1_ESM.doc (598 kb)
Supplementary material 1 (DOC 597 kb)


  1. Allen, K. R., 1971. Relation between production and biomass. Journal of the Fisheries Research Board of Canada 28: 1573–1581Google Scholar
  2. Antacli, J., D. Hernández & M. Sabatini, 2010. Estimating copepods’ abundance with paired nets: implications of mesh size for population studies. Journal of Sea Research 63: 71–77.CrossRefGoogle Scholar
  3. Arcos, D., L. Cubillos & S. Núñez, 2001. The jack mackerel fishery and El Nin˜o 1997–98 effects off Chile. Progress in Oceanography 49: 597–617.CrossRefGoogle Scholar
  4. Arcos, D., L. Cubillos & S. Núñez, 2004. Efectos de El Niño 1997–1998 sobre las principales pesquerías pelágicas de la zona centro-sur de Chile. En: S. Avaria, J. Carrasco, J. Rutllant, y E. Yáñez (eds) El Niño-La Niña 1997–2000. Sus Efectos en Chile. CONA, Valparaíso, Chile.Google Scholar
  5. Antezana, T., 2010. Euphausia mucronata: A Keystone Herbivore and Prey of the Humboldt Current System. Deep-Sea Research Part II: Topical Studies in Oceanography 57: 652–662.CrossRefGoogle Scholar
  6. Arai, M. N., 2005. Predation on pelagic coelenterates: a review. Journal of the Marine Biological Association of the United Kingdom 85: 523–536.CrossRefGoogle Scholar
  7. Baker, C. S. & L. M. Herman, 1984. Aggressive behavior between humpback whales (Megaptera novaeangliae) wintering in Hawaiian waters. Canadian Journal of Zoology 62: 1922–1937.CrossRefGoogle Scholar
  8. Ballance, L. T., R. L. Pitman & S. B. Reilly, 1997. Seabird community structure along a productivity gradient: importance of competition and energetic constraint. Ecology 78: 1502–1518.CrossRefGoogle Scholar
  9. Baquero, F. & M. Lemonnier, 2009. Generational coexistence and ancestor’s inhibition in bacterial populations. FEMS Microbiology Reviews 33: 958–967.PubMedCrossRefGoogle Scholar
  10. Bustos, C. A., F. Balbontín & M. F. Landaeta, 2007. Spawning of the southern hake Merluccius australis (Pisces: Merlucciidae) in Chilean fjords. Fisheries Research 83: 23–32.CrossRefGoogle Scholar
  11. Bustos, C. A., M. F. Landaeta & F. Balbontín, 2008. Spawning and early nursery areas of anchoveta Engraulis ringens Jenyns, 1842 in fjords of southern Chile. Revista de Biología Marina y Oceanografía 43: 381–389.CrossRefGoogle Scholar
  12. Bustos, C. A., M. F. Landaeta & F. Balbontín, 2011. Ichthyoplankton spatial distribution and its relation with water column stratification in fjords of southern Chile (46°48′–50°09′S) in austral spring 1996 and 2008. Continental Shelf Research 31: 293–303.CrossRefGoogle Scholar
  13. Carr, E. F. & K. A. Pitt, 2008. Behavioural responses of zooplankton to the presence of predatory jellyfish. Journal of Experimental Marine Biology and Ecology 354: 101–110.CrossRefGoogle Scholar
  14. Cassini, M. H., 2000. A model on female breeding dispersion and the reproductive systems of pinnipeds. Behavioural Processes 51: 93–99.PubMedCrossRefGoogle Scholar
  15. Cassis, D., P. Muñoz & S. Avaria, 2002. Variación temporal del fitoplancton entre 1993 y 1998 en una estación fija del seno Aysén, Chile (45o26′S 73o00′W). Revista de Biología Marina y Oceanografía 37: 43–65.CrossRefGoogle Scholar
  16. Christensen, V., 1995. Ecosystem maturity: towards quantification. Ecological Modelling 77: 3–32.CrossRefGoogle Scholar
  17. Christensen, V. & D. Pauly, 1992. ECOPATH II: a software for balancing steady-state ecosystem models and calculating network characteristics. Ecological Modelling 61: 169–185.CrossRefGoogle Scholar
  18. Christensen, V., C., Walters &, D. Pauly, 2000. Ecopath with Ecosim: A User′s Guide, October 2000. Fisheries Centre, University of British Columbia, Vancouver, Canada and ICLARM, Penang, Malaysia.Google Scholar
  19. Christensen, V. & C. Walters, 2004. Ecopath with Ecosim: methods, capabilities and limitations. Ecological Modelling 172: 109–139.CrossRefGoogle Scholar
  20. Christensen, V. & C. J. Walters, 2011. Progress in the use of ecosystem modeling for fisheries management. In Christensen, V. & J. L. Maclean (eds), Ecosystem Approaches to Fisheries: A Global Perspective. Cambridge University Press, Cambridge: 189–205.CrossRefGoogle Scholar
  21. Christensen, V., C. Walters, D. Pauly, R. Forrest, 2008. Ecopath with Ecosim version 6: A User′s Guide, October 2008. Fisheries Centre, University of British Columbia, Vancouver, Canada and Lenfest Ocean Futures Project, Vancouver, Canada.Google Scholar
  22. Córdova, J., R. Céspedes, V. Ojeda, F. Balbontín, P. Rojas, A. Saavedra, M. A. Barbieri & J. C. Saavedra, 2006. Evaluación del stock desovante de merluza del sur y merluza de cola en la zona sur austral, año 2005 (2da. Licitación). Informe Final Fondo de Investigación Pesquera. FIP 2005-04. Valparaíso, Chile.
  23. Cornejo-Donoso, J. & T. Antezana, 2008. Preliminary trophic model of the Antarctic Peninsula Ecosystem (Sub-area CCAMLR 48.1). Ecological Modelling 218: 1–17.CrossRefGoogle Scholar
  24. Cury, P. & L. Shannon, 2004. Regime shifts in upwelling ecosystems: observed changes and possible mechanisms in the northern and southern Benguela. Progress in Oceanography 60: 223–243.CrossRefGoogle Scholar
  25. Davila, P., D. Figueroa & E. Muller, 2002. Freshwater input into the coastal ocean and its relation with the salinity distribution off austral Chile (35–55°S). Continental Shelf Research 22: 521–534.CrossRefGoogle Scholar
  26. Daskalov, G. M., A. N. Grishin, S. Rodionov & V. Mihneva, 2007. Trophic cascades triggered by overfishing reveal possible mechanisms of ecosystem regime shifts. Proceedings of the National Academy of Sciences of the United States of America 104: 10518–10523.PubMedCrossRefGoogle Scholar
  27. De La Rocha, C. L. & U. Passow, 2007. Factors influencing the sinking of POC and the efficiency of the biological carbon pump. Deep-Sea Research Part II: Topical Studies in Oceanography 54: 639–658.CrossRefGoogle Scholar
  28. Drago, M., E. A. Crespo, A. Aguilar, L. Cardona, N. Garca, S. L. Dans & N. Goodall, 2009. Historic diet change of the South American sea lion in Patagonia as revealed by isotopic analysis. Marine Ecology Progress Series 384: 273–286.CrossRefGoogle Scholar
  29. Escribano, R., G. Daneri, L. Farías, V. A. Gallardo, H. E. González, D. Gutierrez, C. B. Lange, et al., 2004. Biological and chemical consequences of the 1997–1998 El Niño in the Chilean coastal upwelling system: a synthesis. Deep Sea Research II 51: 2389–2411.CrossRefGoogle Scholar
  30. Espinoza, P. & A. Bertrand, 2008. Revisiting Peruvian anchovy (Engraulis ringens) trophodynamics provides a new vision of the Humboldt Current system. Progress in Oceanography 79: 215–227.CrossRefGoogle Scholar
  31. Everett J. D., M. E. Baird & I. M. Suthers, 2011. Three-dimensional structure of a swarm of the salp Thalia democratica within a cold-core eddy off southeast Australia. Journal of Gophysical Research 116: C12046. doi: 10.1029/2011JC007310.
  32. Frank, K. T., B. Petrie, J. S. Choi & W. C. Leggett, 2005. Trophic cascades in a formerly cod-dominated ecosystem. Science 308: 1621–1623.PubMedCrossRefGoogle Scholar
  33. Gallienne, C. P. & D. B. Robins, 2001. Is Oithona the most important copepod in the world’s oceans? Journal of Plankton Research 23: 1421–1432.CrossRefGoogle Scholar
  34. Giesecke, R. & H. E. González, 2004. Feeding of Sagitta enflata and vertical distribution of chaetognaths in relation to low oxygen concentrations. Journal of Plankton Research 26: 475–486.CrossRefGoogle Scholar
  35. González, H. E., G. Daneri, J. L. Iriarte, B. Yannicelli, E. Menschel, C. Barría, S. Pantoja & L. Lizárraga, 2009. Carbon fluxes within the epipelagic zone of the Humboldt Current System off Chile: the significance of euphausiids and diatoms as key functional groups for the biological pump. Progress in Oceanography 83: 217–227.CrossRefGoogle Scholar
  36. González, H. E., M. J. Calderón, L. Castro, A. Clement, L. A. Cuevas, G. Daneri, J. L. Iriarte, L. Lizrraga, R. Martnez, E. Menschel, N. Silva, C. Carrasco, C. Valenzuela, C. A. Vargas & C. Molinet, 2010. Primary production and plankton dynamics in the Reloncaví Fjord and the Interior Sea of Chiloé, Northern Patagonia, Chile. Marine Ecology Progress Series 402: 13–30.CrossRefGoogle Scholar
  37. González, H. E., L. Castro, G. Daneri, J. L. Iriarte, N. Silva, C. A. Vargas, R. Giesecke & N. Sánchez, 2011. Seasonal plankton variability in Chilean Patagonia fjords: carbon flow through the pelagic food web of Aysen Fjord and plankton dynamics in the Moraleda Channel basin. Continental Shelf Research 31: 225–243.CrossRefGoogle Scholar
  38. Häussermann, V., 2006. Biodiversity of Chilean sea anemones (Cnidaria: Anthozoa): distribution patterns and zoogeographic implications, including new records for the fjord region. Investigaciones Marinas 34: 23–35.CrossRefGoogle Scholar
  39. Heinle, D. R., R. P. Harris, J. F. Ustach & D. A. Flemer, 1977. Detritus as food for estuarine copepods. Marine Biology 40: 341–353.CrossRefGoogle Scholar
  40. Hessen, D., 2008. Efficiency, energy and stoichiometry in pelagic food webs; reciprocal roles of food quality and food quantity. Freshwater Reviews 1: 43–57.Google Scholar
  41. Honjo, S., S. J. Manganini, R. A. Krishfield & R. Francois, 2008. Particulate organic carbon fluxes to the ocean interior and factors controlling the biological pump: a synthesis of global sediment trap programs since 1983. Progress in Oceanography 76: 217–285.CrossRefGoogle Scholar
  42. Hucke-Gaete, R., L. P. Osman, C. A. Moreno, K. P. Findlay & D. K. Ljungblad, 2004. Discovery of a blue whale feeding and nursing ground in southern Chile. Proceedings of the Royal Society B: Biological Science 271: 170–173.CrossRefGoogle Scholar
  43. Iriarte, J. L. & H. E. González, 2004. Phytoplankton size structure during and after the 1997/98 El Niño in a coastal upwelling area of the northern Humboldt Current System. Marine Ecology Progress Series 269: 83–90.CrossRefGoogle Scholar
  44. Iriarte, J. L., H. E. González, K. K. Liu, C. Rivas & C. Valenzuela, 2007. Spatial and temporal variability of chlorophyll and primary productivity in surface waters of southern Chile (41.5–43°S). Estuarine, Coastal and Shelf Science 74: 471–480.CrossRefGoogle Scholar
  45. Keller, L. & M. G. Surette, 2006. Communication in bacteria: an ecological and evolutionary perspective. Nature Reviews Microbiology 4: 249–258.PubMedCrossRefGoogle Scholar
  46. Lampitt, R. S., K. F. Wishner, C. M. Turley & M. V. Angel, 1993. Marine snow studies in the Northeast Atlantic Ocean: distribution, composition and role as a food source for migrating plankton. Marine Biology 116: 689–702.CrossRefGoogle Scholar
  47. Larson, R. J., 1987. Daily ration and predation by medusae and ctenophores in Saanich Inlet, B.C., Canada. Netherlands Journal of Sea Research 21: 35–44.CrossRefGoogle Scholar
  48. Libralato, S., V. Christensen & D. Pauly, 2006. A method for identifying keystone species in food web models. Ecological Modelling 195: 153–171.CrossRefGoogle Scholar
  49. Lillo, S., R. Céspedes, V. Ojeda, F. Balbontín, R. Bravo, A. Saavedra, M. A. Barbieri & C. Vera, 2005. Evaluación del stock desovante de merluza del sur y merluza de cola en la zona sur austral, año 2004. Informe Final Fondo de Investigación Pesquera. FIP 2004-07. Valparaíso, Chile.
  50. Lindeman, R. L., 1942. The trophic-dynamic aspect of ecology. Ecology 23: 399–418.CrossRefGoogle Scholar
  51. Lynam, C. P., S. J. Hay & A. S. Brierley, 2005. Jellyfish abundance and climatic variation: contrasting responses in oceanographically distinct regions of the North Sea, and possible implications for fisheries. Journal of the Marine Biological Association of the United Kingdom 85: 435–450.CrossRefGoogle Scholar
  52. MacLeod, C. D., 1998. Intraspecific scarring in odontocete cetaceans: an indicator of male “quality” in aggressive social interactions? Journal of Zoology 244: 71–77.Google Scholar
  53. Mattern, T., U. Ellenberg, G. Luna-Jorquera & Ll. S. Davis, 2004. Humboldt Penguin Census on Isla Chañaral, Chile: recent increase or past underestimate of penguin numbers? Waterbirds 27: 368–376.CrossRefGoogle Scholar
  54. Mayzaud, P., V. Tirelli, J. M. Bernard & O. Roche-Mayzaud, 1998. The influence of food quality on the nutritional acclimation of the copepod Acartia clausi. Journal of Marine Systems 15: 483–493.CrossRefGoogle Scholar
  55. Moloney, C. L., 2010. The humble bearded goby is a keystone species in Namibia’s marine ecosystem. South African Journal of Science 106: 1–2.CrossRefGoogle Scholar
  56. Müller-Solger, A. B., A. D. Jassby & D. C. Müller-Navarra, 2002. Nutritional quality of food resources for zooplankton (daphnia) in a tidal freshwater system (Sacramento-San Joaquin River Delta). Limnology and Oceanography 47: 1468–1476.CrossRefGoogle Scholar
  57. Odum, E. P., 1969. The strategy of ecosystem development. Science 104: 262–270.CrossRefGoogle Scholar
  58. Odum, E. & E. Heald, 1975. The detritus-based food web of an estuarine mangrove community. In Cronin, L. E. (ed.), Estuarine Research, Vol. 1. Academic Press, New York: 265–286.Google Scholar
  59. Oliveira, L. R., M. Arias-Schreiber, D. Meyer & J. S. Morgante, 2006. Effective population size in a bottlenecked fur seal population. Biological Conservation 131: 505–509.CrossRefGoogle Scholar
  60. Paffenhofer, G. A., M. H. Bundy, K. D. Lewis & C. Metz, 1995. Rates of ingestion and their variability between individual calanoid copepod: direct observations. Journal of Plankton Research 17: 1573–1585.CrossRefGoogle Scholar
  61. Palma, S. & N. Silva, 2004. Distribution of siphonophores, chaetognaths, euphausiids and oceanographic conditions in the fjords and channels of southern Chile. Deep-Sea Research Part II: Topical Studies in Oceanography 51: 513–535.CrossRefGoogle Scholar
  62. Palomares, M. L. D. & D. Pauly, 2009. The growth of jellyfishes. Jellyfish blooms: causes, consequences, and recent advances. Hydrobiologia 616: 11–21.CrossRefGoogle Scholar
  63. Pauly, D., V. Christensen & C. Walters, 2000. Ecopath, Ecosim, and Ecospace as tools for evaluating ecosystem impact of fisheries. ICES Journal of Marine Science 57: 697–706.CrossRefGoogle Scholar
  64. Pauly, D., W. Graham, S. Libralato, L. Morissette & M. L. Deng Palomares, 2009. Jellyfish in ecosystems, online databases, and ecosystem models. Hydrobiologia 616: 67–85.CrossRefGoogle Scholar
  65. Pavés, H. J. & R. P. Schlatter, 2008. Temporada reproductiva del lobo fino austral, Arctocephalus australis (Zimmerman, 1783) en la Isla Guafo, Chiloé, Chile. Revista Chilena de Historia Natural 81: 137–149.CrossRefGoogle Scholar
  66. Pavés, H. J. & H. E. González, 2008. Carbon fluxes within the pelagic food web in the coastal area off Antofagasta (23°S), Chile: the significance of the microbial versus classical food webs. Ecological Modelling 212: 218–232.CrossRefGoogle Scholar
  67. Pavés, H. J., H. E. González & J. L. Iriarte (unpublished data). Carbon flows through the pelagic sub-foodweb in two basins of the Chilean Patagonian coastal system: the significance of coastal-ocean connection on ecosystemic parameters.Google Scholar
  68. Peña, M. A., M. R. Lewis & W. G. Harrison, 1990. Primary productivity and size structure of phytoplankton biomass on a transect of the equator at 135°W in the Pacific Ocean. Deep-Sea Research Part I: Oceanographic Research Papers 37: 295–315.CrossRefGoogle Scholar
  69. Perhar, G. & G. B. Arhonditsis, 2009. The effects of seston food quality on planktonic food web patterns. Ecological Modelling 220: 805–820.CrossRefGoogle Scholar
  70. Prokopchuk, I., 2009. Feeding of the Norwegian spring spawning herring Clupea harengus (Linne) at the different stages of its life cycle. Deep-Sea Research Part II: Topical Studies in Oceanography 56: 2044–2053.CrossRefGoogle Scholar
  71. Purcell, J. E., 1981. Dietary composition and diel feeding patterns of epipelagic siphonophores. Marine Biology 65: 83–90.CrossRefGoogle Scholar
  72. Purcell, J. E. & M. V. Sturdevant, 2001. Prey selection and dietary overlap among zooplanktivorous jellyfish and juvenile fishes in Prince William Sound, Alaska. Marine Ecology: Progress Series 210: 67–83.CrossRefGoogle Scholar
  73. Reyes-Arriagada, R., P. Campos-Ellwanger, R. P. Schlatter & C. Baduini, 2007. Sooty Shearwater (Puffinus griseus) on Guafo Island: the largest seabird colony in the world? Biodiversity and Conservation 16: 913–930.CrossRefGoogle Scholar
  74. Reynolds, C., 2008. A changing paradigm of pelagic food webs. International Hydrographic Review 93: 517–531.CrossRefGoogle Scholar
  75. Riccardi, N., 2010. Selectivity of plankton nets over mesozooplankton taxa: implications for abundance, biomass and diversity estimation. Journal of Limnology 69: 287–296.CrossRefGoogle Scholar
  76. Saavedra, A., V. Correa, R. Céspedes, V. Ojeda, L. Adasme, E. Díaz, J. Oliva & P. Rojas, 2007. Evaluación hidroacústica del stock parental de merluza de tres aletas en su unidad de pesquería, año 2005. Informe Final Corregido Fondo de Investigación Pesquera. FIP 2005-06. Valparaíso, Chile.
  77. Samuels, A. & T. Gifford, 1997. A quantitative assessment of dominance relations among bottlenose dolphins. Marine Mammal Science 13: 70–99.CrossRefGoogle Scholar
  78. Sánchez, N., H. E. González & J. L. Iriarte, 2011. Trophic interactions of pelagic crustaceans in Comau Fjord (Chile): their role in the food web structure. Journal of Plankton Research 33: 1212–1229.CrossRefGoogle Scholar
  79. Silva, N. & S. Palma, 2008. Progress in the oceanographic knowledge of Chilean Interior Waters, from Puerto Montt to Cap Horn. Comité Oceanográfico Nacional—Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile.Google Scholar
  80. Sherr, B. & E. Sherr, 1988. Role of microbes in pelagic food webs: a revised concept. Limnology and Oceanography 33: 1225–1227.CrossRefGoogle Scholar
  81. Smith, R. C., K. S. Baker, H. M. Dierssen, S. E. Stammerjohn & M. Vernet, 2001. Variability of primary production in an Antarctic marine ecosystem as estimated using a multi-scale sampling strategy. American Zoologist 41: 40–56.CrossRefGoogle Scholar
  82. Stehle, M., A. Dos Santos & H. Queiroga, 2007. Comparison of zooplankton sampling performance of Longhurst–Hardy Plankton Recorder and Bongo nets. Journal of Plankton Research 29: 169–177.CrossRefGoogle Scholar
  83. Vargas, C. A. & L. P. Madin, 2004. Zooplankton feeding ecology: clearance and ingestion rates of the salps Thalia democratica, Cyclosalpa affinis and Salpa cylindrica on naturally occurring particles in the Mid-Atlantic Bight. Journal of Plankton Research 26: 827–833.CrossRefGoogle Scholar
  84. Walters, C., D. Pauly & V. Christensen, 1999. Ecospace: prediction of mesoscale spatial patterns in trophic relationships of exploited ecosystems, with emphasis on the impacts of marine protected areas. Ecosystems 2: 539–554.CrossRefGoogle Scholar
  85. Wilson, S. E., D. K. Steinberg & K. O. Buesseler, 2008. Changes in fecal pellet characteristics with depth as indicators of zooplankton repackaging of particles in the mesopelagic zone of the subtropical and subarctic North Pacific Ocean. Deep-Sea Research Part II-Topical Studies in Oceanography 55: 1636–1647.CrossRefGoogle Scholar
  86. Zamorano-Abramson, J., J. Gibbons & J. Capella, 2010. Diversity and summer distribution of cetaceans in inlet waters of Northern Aisén, Chile. Anales Instituto Patagonia (Chile) 38: 151–157.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Héctor J. Pavés
    • 1
    • 2
  • Humberto E. González
    • 1
    • 3
  • Villy Christensen
    • 4
  1. 1.Instituto de Ciencias Marinas y Limnológicas, Facultad de CienciasUniversidad Austral de ChileValdiviaChile
  2. 2.Fisheries CentreUniversity of British ColumbiaVancouverCanada
  3. 3.COPAS Sur Austral (PFB-31/2007) and COPAS, Center of OceanographyUniversidad de Concepción, Concepción and Patagonian Ecosystem Research Center (CIEP)CoyhaiqueChile
  4. 4.Fisheries CentreUniversity of British ColumbiaVancouverCanada

Personalised recommendations