Hydrobiologia

, Volume 731, Issue 1, pp 5–18 | Cite as

Weak trends in ice phenology of Estonian large lakes despite significant warming trends

EUROPEAN LARGE LAKES III

Abstract

We studied changes in air temperature (AT) in Tartu, Estonia, since 1866; ice phenology in two Estonian large lakes since the 1920s; and daily surface water temperatures (SWT) in these lakes since the 1940s. The Mann–Kendall test showed increasing AT trends in all seasons with biggest changes in spring. The strongest increase in SWT occurred in April and August. The temperature increase has accelerated since 1961. Despite significant trends in the seasonal AT and SWT of Estonian large lakes, trends in ice phenology were weak or absent, implying that the processes governing ice phenology are more complex than those governing lake SWT. Greater snowfall was associated with later ice breakup, longer duration of ice cover, and greater ice thickness, while the relationship between winter rainfall and these ice parameters was the opposite. In the deeper Lake Peipsi, ice-on occurred later and ice-off earlier than in the shallower Võrtsjärv. The dates of both ice-on and ice-off responded more sensitively to AT in the case of Peipsi than in the case of Võrtsjärv. An increase of the average November–March AT by 2°C would presumably halve the ice cover duration in Peipsi but shorten it only by about 20% in Võrtsjärv.

Keywords

Air temperature Surface water temperature Freezing date Ice breakup date Lake morphometry 

References

  1. Adrian, R., C. M. O’Reilly, H. Zagarese, S. B. Baines, D. O. Hessen, W. Keller, D. M. Livingstone, R. Sommaruga, D. Straile, E. Van Donk, G. A. Weyhenmeyer & M. Winder, 2009. Lakes as sentinels of climate change. Limnology and Oceanography 54: 2283–2297.PubMedCentralPubMedCrossRefGoogle Scholar
  2. Anneville, O., S. Gammeter & D. Straile, 2005. Phosphorus decrease and climate variability: mediators of synchrony in phytoplankton changes among European peri-alpine lakes. Freshwater Biology 50: 1731–1746.CrossRefGoogle Scholar
  3. Arvola, L., D. G. George, D. M. Livingstone, M. Järvinen, T. Blenckner, M. T. Dokulil, E. Jennings, C. N. Aonghusa, P. Nõges, T. Nõges & G. A. Weyhenmeyer, 2010. The impact of changing climate on the thermal characteristics of lakes. In George, D. G. (ed.), The Impact of Climate Change on European Lakes, Aquatic Ecology Series 4. Springer, Dordrecht: 85–101.Google Scholar
  4. Assel, R. & D. M. Robertson, 1995. Changes in winter air temperatures near Lake Michigan, 1851–1993, as determined from regional lake-ice records. Limnology and Oceanography 40: 165–176.CrossRefGoogle Scholar
  5. Austin, J. A. & S. M. Colman, 2007. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophysical Research Letters 34: L06604. doi:10.1029/2006GL029021.CrossRefGoogle Scholar
  6. BACC, 2008. Assessment of Climate Change for the Baltic Sea Basin. Regional Climate Studies. Springer, Berlin.Google Scholar
  7. Beltaos, S., 2004. Climate impacts on the ice regime of an Atlantic river. Nordic Hydrology 35: 81–99.Google Scholar
  8. Benson, B. J., J. J. Magnuson, O. P. Jensen, V. M. Card, G. Hodgkins, J. Korhonen, D. M. Livingstone, K. M. Stewart, G. A. Weyhenmeyer & N. G. Granin, 2012. Extreme events, trends, and variability in Northern Hemisphere lake-ice phenology (1855–2005). Climatic Change 112: 299–323.CrossRefGoogle Scholar
  9. Bernhardt, J., C. Engelhardt, G. Kirillin & J. Matschullat, 2012. Lake ice phenology in Berlin-Brandenburg from 1947–2007: observations and model hindcasts. Climatic Change 112: 791–817.CrossRefGoogle Scholar
  10. Cole, J. J., Y. T. Prairie, N. F. Caraco, W. H. McDowell, L. J. Tranvik, R. G. Striegl, C. M. Duarte, P. Kortelainen, J. A. Downing, J. J. Middelburg & J. Melack, 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10: 171–184.CrossRefGoogle Scholar
  11. Dabrowski, M., W. Marszelewski & R. Skowron, 2004. The trends and dependencies between air and water temperatures in lakes in northern Poland from 1961–2000. Hydrology and Earth System Sciences 8: 79–87.CrossRefGoogle Scholar
  12. Dibike, Y., T. Prowse, T. Saloranta & R. Ahmed, 2011. Response of Northern Hemisphere lake-ice cover and lake-water thermal structure patterns to a changing climate. Hydrological Processes 25: 2942–2953.Google Scholar
  13. Dibike, Y., T. Prowse, B. Bonsal, L. de Rham & T. Saloranta, 2012. Simulation of North American lake-ice cover characteristics under contemporary and future climate conditions. International Journal of Climatology 32: 695–709.CrossRefGoogle Scholar
  14. Duguay, C. R., T. D. Prowse, B. R. Bonsal, R. D. Brown, M. P. Lacroix & P. Ménard, 2006. Recent trends in Canadian lake ice cover. Hydrological Processes 20: 781–801.CrossRefGoogle Scholar
  15. Houser, J. N., 2006. Water color affects the stratification, surface temperature, heat content, and mean epilimnetic irradiance of small lakes. Canadian Journal of Fisheries and Aquatic Sciences 63: 2447–2455.CrossRefGoogle Scholar
  16. Hurrell, J. W., 1996. Influence of variations in extra-tropical wintertime teleconnections on Northern Hemisphere temperature. Geophysical Research Letters 23: 665–668.CrossRefGoogle Scholar
  17. IPCC, 2007. Climate Change 2007: the physical science basis. In Solomon, S., D. Qin, M. Manning, Z. Chen, M. Marquis, K. B. Averyt, M. Tignor & H. L. Miller (eds), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.Google Scholar
  18. Izmest’eva, L. R., E. A. Silow & E. Litchman, 2011. Long-term dynamics of Lake Baikal pelagic phytoplankton under climate change. Inland Water Biology 4: 301–307.CrossRefGoogle Scholar
  19. Jaani, A., 2001. Thermal regime and ice conditions. In Nõges, T. (ed.), Lake Peipsi. Meteorology, Hydrology, Hydrochemistry. Sulemees Publishers, Tartu: 65–72.Google Scholar
  20. Jankowski, T., D. M. Livingstone, R. Forster, H. Bührer & P. Niederhauser, 2006. Consequences of the 2003 European heatwave for lakes: implications for a warmer world. Limnology and Oceanography 51: 815–819.CrossRefGoogle Scholar
  21. Jensen, O. P., B. J. Benson, J. J. Magnuson, V. M. Card, M. N. Futter, P. A. Soranno & K. M. Stewart, 2007. Spatial analysis of ice phenology trends across the Laurentian Great Lakes region during a recent warming period. Limnology and Oceanography 52: 2013–2026.CrossRefGoogle Scholar
  22. Jones, P. D., T. Jonsson & D. Wheeler, 1997. Extension to the North Atlantic Oscillation using early instrumental pressure observations from Gibraltar and South-West Iceland. International Journal of Climatology 17: 1433–1450.CrossRefGoogle Scholar
  23. Karetnikov, S. G. & M. A. Naumenko, 2008. Recent trends in Lake Ladoga ice cover. Hydrobiologia 599: 41–48.CrossRefGoogle Scholar
  24. Kilkus, K. & G. Valiuškevičius, 2001. Klimato svyravimų atspindžiai ežerų ir upių hidrologiniuose bei hidrofiziniuose rodikliuose. In Bukantis, A. (ed.), Klimato svyravimų poveikis fiziniams geograiniams procesams Lietuvoje. Vilniaus Universitetas, Vilnius: 194–230.Google Scholar
  25. Korhonen, J., 2002. Suomen vesistöjen lämpötilaolot 1900-luvulla. Suomen Ymparistö 566: 1–115.Google Scholar
  26. Korhonen, J., 2006. Long-term trends in lake ice cover in Finland. Proceedings of the 18th IAHR International Symposium on Ice: 71–78.Google Scholar
  27. Kundzewicz, Z. W. & A. J. Robson, 2004. Change detection in hydrological records – a review of the methodology. Hydrological Sciences Journal 49: 7–19.CrossRefGoogle Scholar
  28. Livingstone, D. M., 1997. Break-up dates of Alpine lakes as proxy data for local and regional mean surface air temperatures. Climatic Change 37: 407–439.CrossRefGoogle Scholar
  29. Livingstone, D. M., 2000. Large-scale climatic forcing detected in historical observations of lake ice break-up. Verhandlungen der Internationalen Vereinigung für Limnologie 27(5): 2775–2783.Google Scholar
  30. Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate central European lake. Climatic Change 57: 205–225.CrossRefGoogle Scholar
  31. Livingstone, D. M. & R. Adrian, 2009. Modeling the duration of intermittent ice cover on a lake for climate-change studies. Limnology and Oceanography 54: 1709–1722.CrossRefGoogle Scholar
  32. Livingstone, D. M. & M. T. Dokulil, 2001. Eighty years of spatially coherent Austrian lake surface water temperatures and their relationship to regional air temperature and the North Atlantic Oscillation. Limnology and Oceanography 46: 1220–1227.CrossRefGoogle Scholar
  33. Livingstone, D. M., R. Adrian, T. Blenckner, G. George & G. A. Weyhenmeyer, 2010a. Lake ice phenology. In George, D. G. (ed.), The Impact of Climate Change on European Lakes, Aquatic Ecology Series 4. Springer, Dordrecht: 51–61.CrossRefGoogle Scholar
  34. Livingstone, D. M., R. Adrian, L. Arvola, T. Blenckner, M. T. Dokulil, R. E. Hari, G. George, T. Jankowski, M. Järvinen, E. Jennings, P. Nõges, T. Nõges, D. Straile & G. A. Weyhenmeyer, 2010b. Regional and supra-regional coherence in limnological variables. In George, D. G. (ed.), The Impact of Climate Change on European Lakes, Aquatic Ecology Series 4. Springer, Dordrecht: 311–337.CrossRefGoogle Scholar
  35. Magnuson, J. J., D. M. Robertson, B. J. Benson, R. H. Wynne, D. M. Livingstone, T. Arai, R. A. Assel, R. G. Barry, V. Card, E. Kuusisto, N. G. Granin, T. D. Prowse, K. M. Stewart & V. S. Vuglinski, 2000. Historical trends in lake and river ice cover in the Northern Hemisphere. Science 289: 1743–1746.PubMedCrossRefGoogle Scholar
  36. Magnuson, J. J., B. J. Benson, J. D. Lenters & D. M. Robertson, 2006. Climate-driven variability and change. In Magnuson, J. J., T. K. Kratz & B. J. Benson (eds), Long-Term Dynamics of Lakes in the Landscape: Long-Term Ecological Research on North Temperate Lakes. Oxford University Press, Oxford: 123–150.Google Scholar
  37. Nõges, T., 2009. Trends in air temperature in Estonia and in water temperature of Estonian large lakes in 1961–2004, possible consequences on water quality. Verhandlungen der internationalen Vereinigung für Limnologie 30(7): 997–999.Google Scholar
  38. Nõges, T., P. Nõges, A. Jolma & J. Kaitaranta, 2009. Impacts of climate change on physical characteristics of lakes in Europe. JRC Scientific and Technical Reports, EUR 24064 EN. Office for Official Publications of the European Communities, Luxembourg.Google Scholar
  39. Palecki, M. A. & R. G. Barry, 1986. Freeze-up and break-up of lakes as an index of temperature changes during the transition seasons: a case study for Finland. Journal of Climate and Applied Meteorology 25: 893–902.CrossRefGoogle Scholar
  40. Pärn, O., 2006. Jäänähtuste ja veetemperatuuri tundlikkus kliima muutusele. Publicationes Geophysicales Universitatis Tartuensis 50: 97–106.Google Scholar
  41. Pernaravičiute, B., 2004. The impact of climate change on thermal regime of Lithuanian lakes. Ekologija 2: 58–63.Google Scholar
  42. Robertson, D. M., R. A. Ragotzkie & J. J. Magnuson, 1992. Lake ice records used to detect historical and future climatic changes. Climatic Change 21: 407–427.CrossRefGoogle Scholar
  43. Roulet, N. & T. R. Moore, 2006. Browning the waters. Nature 444: 283–284.PubMedCrossRefGoogle Scholar
  44. Schneider, P. & S. J. Hook, 2010. Space observations of inland water bodies show rapid surface warming since 1985. Geophysical Research Letters 37: L22405. doi:10.1029/2010GL045059.CrossRefGoogle Scholar
  45. Skinner, W. R., 1993. Lake ice conditions as a cryospheric indicator for detecting climate variability in Canada. In Detection Strategies for Snow and Ice. Proceedings of the International Workshop on Snow and Lake Ice Cover, and the Climate System, 30–31 March 1992, Niagara, ON, Canada: 204–240.Google Scholar
  46. Šporka, F., D. M. Livingstone, E. Stuchlík, J. Turek & J. Galas, 2006. Water temperatures and ice cover in the lakes of the Tatra Mountains. Biologia 61: 77–90.CrossRefGoogle Scholar
  47. Stewart, K. M. & R. K. Haugen, 1990. Influence of lake morphometry on ice dates. Verhandlungen der internationale Vereinigung für Limnologie 24(1): 122–127.Google Scholar
  48. Tooming, H., 1996. Changes in surface albedo and air temperature at Tartu, Estonia. Tellus 48A: 722–726.CrossRefGoogle Scholar
  49. Vavrus, S. J., R. H. Wynne & J. A. Foley, 1996. Measuring the sensitivity of southern Wisconsin lake ice to climate variations and lake depth using a numerical model. Limnology and Oceanography 41: 822–831.CrossRefGoogle Scholar
  50. Weyhenmeyer, G. A., 2004. Synchrony in relationships between the North Atlantic Oscillation and water chemistry among Sweden’s largest lakes. Limnology and Oceanography 49: 1191–1201.CrossRefGoogle Scholar
  51. Weyhenmeyer, G. A., M. Meili & D. M. Livingstone, 2004. Nonlinear temperature response of lake ice breakup. Geophysical Research Letters 31: L07203.CrossRefGoogle Scholar
  52. Weyhenmeyer, G. A., A.-K. Westöö & E. Willén, 2008. Increasingly ice-free winters and their effects on water quality in Sweden’s largest lakes. Hydrobiologia 599: 111–118.CrossRefGoogle Scholar
  53. Weyhenmeyer, G. A., D. M. Livingstone, M. Meili, O. Jensen, B. Benson & J. J. Magnuson, 2011. Large geographical differences in the sensitivity of ice-covered lakes and rivers in the Northern Hemisphere to temperature changes. Global Change Biology 17: 268–275.CrossRefGoogle Scholar
  54. Williams, G., K. L. Layman & H. G. Stefan, 2004. Dependence of lake ice covers on climatic, geographic and bathymetric variables. Cold Regions Science and Technology 40: 145–164.CrossRefGoogle Scholar
  55. Williamson, C. E., W. Dodds, T. K. Kratz & M. Palmer, 2008. Lakes and streams as sentinels of environmental change in terrestrial and atmospheric processes. Frontiers in Ecology and the Environment 6: 247–254.CrossRefGoogle Scholar
  56. Williamson, C. E., J. E. Saros & D. W. Schindler, 2009. Sentinels of change. Science 323: 887–889.PubMedCrossRefGoogle Scholar
  57. Wynne, R. H., J. J. Magnuson, M. K. Clayton, T. M. Lillesand & D. C. Rodman, 1996. Determinants of temporal coherence in the satellite-derived 1987–1994 ice breakup dates of lakes on the Laurentian Shield. Limnology and Oceanography 41: 832–838.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Centre for Limnology, Institute of Agricultural and Environmental SciencesEstonian University of Life SciencesRannuEstonia

Personalised recommendations