Hydrobiologia

, Volume 731, Issue 1, pp 95–108 | Cite as

Nitrogen transformations at the sediment–water interface across redox gradients in the Laurentian Great Lakes

  • Gaston E. Small
  • James B. Cotner
  • Jacques C. Finlay
  • Rebecca A. Stark
  • Robert W. Sterner
EUROPEAN LARGE LAKES III

Abstract

The capacity of a lake to remove reactive nitrogen (N) through denitrification has important implications both for the lake and for downstream ecosystems. In large oligotropic lakes such as Lake Superior, where nitrate (NO3) concentrations have increased steadily over the past century, deep oxygen penetration into sediments may limit the denitrification rates. We tested the hypothesis that the position of the redox gradient in lake sediments affects denitrification by measuring net N-fluxes across the sediment–water interface for intact sediment cores collected across a range of sediment oxycline values from nearshore and offshore sites in Lake Superior, as well as sites in Lake Huron and Lake Erie. Across this redox gradient, as the thickness of the oxygenated sediment layer increased from Lake Erie to Lake Superior, fluxes of NH4+ and N2 out of the sediment decreased, and sediments shifted from a net sink to a net source of NO3. Denitrification of NO3 from overlying water decreased with thickness of the oxygenated sediment layer. Our results indicate that, unlike sediments from Lake Erie and Lake Huron, Lake Superior sediments do not remove significant amounts of water column NO3 through denitrification, likely as a result of the thick oxygenated sediment layer.

Keywords

Denitrification Laurentian Great Lakes Nitrogen Sediment 

References

  1. Anthony, J. L. & W. M. Lewis, Jr., 2012. Low boundary layer response and temperature dependence of nitrogen and phosphorus releases from oxic sediments of an oligotrophic lake. Aquatic Sciences – Research Across Boundaries 74(3): 611–617.CrossRefGoogle Scholar
  2. Bennett, E., 1978. Characteristics of the thermal regime of Lake Superior. Journal of Great Lakes Research 4: 310–319.CrossRefGoogle Scholar
  3. Finlay, J. C., R. W. Sterner & S. Kumar, 2007. Isotopic evidence for in-lake production of accumulating nitrate in Lake Superior. Ecological Applications 17: 2323–2332.PubMedCrossRefGoogle Scholar
  4. Galloway, J. N., 1998. The global nitrogen cycle: changes and consequences. Environmental Pollution 102: 15–24.CrossRefGoogle Scholar
  5. Galloway, J. N., F. J. Dentener, D. G. Capone, E. W. Boyer, R. W. Howarth, S. P. Seitzinger, G. P. Asner, C. C. Cleveland, P. A. Green, E. A. Holland, D. M. Karl, A. F. Michaels, J. H. Porter, A. R. Townsend & C. J. Vorosmarty, 2004. Nitrogen cycles: past, present, and future. Biogeochemistry 70: 153–226.CrossRefGoogle Scholar
  6. Gardner, W. S., T. F. Nalepa & J. M. Malczyk, 1987. Nitrogen mineralization and denitrification in Lake Michigan sediments. Limnology & Oceanography 32: 1226–1238.CrossRefGoogle Scholar
  7. Heinen, E. A. & J. McManus, 2004. Carbon and nutrient cycling at the sediment-water boundary in western Lake Superior. Journal of Great Lakes Research 30: 113–132.CrossRefGoogle Scholar
  8. Joye, S. B. & J. T. Hollibaugh, 1995. Influence of sulfide inhibition of nitrification on nitrogen regeneration in sediments. Science 270: 623–625.CrossRefGoogle Scholar
  9. Kling, G. W., G. W. Kipphut & M. C. Miller, 1992. The flux of CO2 and CH4 from lakes and rivers in Arctic Alaska. Hydrobiologia 240: 23–36.CrossRefGoogle Scholar
  10. Klump, J., R. Paddock, C. C. Remsen, S. Fitzgerald, M. Boraas & P. Anderson, 1989. Variations in sediment accumulation rates and the flux of labile organic matter in eastern Lake Superior basins. Journal of Great Lakes Research 15: 104–122.CrossRefGoogle Scholar
  11. Kumar, S., R. S. Sterner & J. C. Finlay, 2008. Nitrogen uptake dynamics in Lake Superior. Journal of Geophysical Research: Biogeosciences 113: G04003.Google Scholar
  12. Li, J., S. A. Rowe, D. Miklesh, M. Kistner, D. E. Canfield & S. Katsev, 2012. Carbon mineralization and oxygen dynamics in sediments with deep oxygen penetration, Lake Superior. Limnology & Oceanography 57: 1634–1650.CrossRefGoogle Scholar
  13. Matheson, D. H. & M. Munawar, 1978. Lake Superior basin and its development. Journal of Great Lakes Research 4: 249–263.CrossRefGoogle Scholar
  14. Munawar, M. & I. F. Munawar, 1978. Phytoplankton of Lake Superior 1973. Journal of Great Lakes Research 4: 415–442.CrossRefGoogle Scholar
  15. Nielson, L. P., 1992. Denitrification in sediments determined from nitrogen isotope pairing. FEMS Microbiology Ecology 86: 357–362.CrossRefGoogle Scholar
  16. Pfenning, K. S. & P. B. McMahon, 1996. Effect of nitrate, organic carbon, and temperature on potential denitrification rates in nitrate-rich riverbed sediments. Journal of Hydrology 187: 283–295.CrossRefGoogle Scholar
  17. Redfield, A., 1958. The biological control of chemical factors in the environment. American Scientist 46: 205–221.Google Scholar
  18. Revsbech, N. P., 1989. An oxygen microelectrode with a guard cathode. Limnology & Oceanography 34: 472–476.CrossRefGoogle Scholar
  19. Risgaard-Petersen, N., L. P. Nielsen, S. Rysgaard, T. Dalsgaard & R. L. Meyer, 2003. Application of the isotope pairing technique in sediments where anammox and denitrification coexist. Limnology & Oceanography: Methods 1: 67–73.Google Scholar
  20. Robertson, D. M., 1997. Regionalized loads of sediment and phosphorus to Lakes Michigan and Superior – high flow and long-term averages. Journal of Great Lakes Research 23: 416–439.CrossRefGoogle Scholar
  21. Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnology & Oceanography 33: 702–724.CrossRefGoogle Scholar
  22. Seitzinger, S., J. A. Harrison, J. K. Böhlke, A. F. Bouwman, R. Lowrance, B. Peterson, C. Tobias & G. Van Drecht, 2006. Denitrification across landscapes and waterscapes: a synthesis. Ecological Applications 16: 2064–2090.PubMedCrossRefGoogle Scholar
  23. Small, G. E., G. S. Bullerjahn, R. W. Sterner, B. F. N. Beall, S. Brovold, J. C. Finlay, R. M. L. McKay & M. Mukherjee, 2013. Rates and controls of nitrification in a large oligotrophic lake. Limnology & Oceanography 58: 276–286.CrossRefGoogle Scholar
  24. Sterner, R. W., 2011. C:N:P stoichiometry in Lake Superior: freshwater sea as end member. Inland Waters 1: 29–46.CrossRefGoogle Scholar
  25. Sterner, R. W., T. M. Smutka, R. M. L. McKay, Q. Xiaoming, E. T. Brown & R. M. Sherrell, 2004. Phosphorus and trace metal limitation of algae and bacteria in Lake Superior. Limnology & Oceanography 49: 495–507.CrossRefGoogle Scholar
  26. Sterner, R. W., E. Anagnostou, S. Brovold, G. S. Bullerjahn, J. C. Finlay, S. Kumar, R. M. L. McKay & R. M. Sherrell, 2007. Increasing stoichiometric imbalance in North America’s largest lake: nitrification in Lake Superior. Geophysical Research Letters 34: L10406.CrossRefGoogle Scholar
  27. Taylor, B. W., C. A. Keep, A. S. Flecker, R. O. Hall, B. J. Koch, L. M. Tronstad & A. J. Ulseth, 2007. Improving the fluorometric ammonium method: matrix effects, background fluorescence, and standard additions. Journal of the North American Benthological Society 26: 167–177.CrossRefGoogle Scholar
  28. Thomas, R. L. & C. I. Dell, 1978. Sediments of Lake Superior. Journal of Great Lakes Research 4: 264–275.CrossRefGoogle Scholar
  29. Vitousek, P. M., J. D. Aber, R. W. Howarth, G. E. Likens, P. A. Matson, D. W. Schindler, W. H. Schlesinger & D. G. Tilman, 1997. Human alteration of the global nitrogen cycle: sources and consequences. Ecological Applications 7: 737–750.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Gaston E. Small
    • 1
  • James B. Cotner
    • 2
  • Jacques C. Finlay
    • 2
  • Rebecca A. Stark
    • 2
  • Robert W. Sterner
    • 2
  1. 1.Department of BiologyUniversity of St. ThomasSt. PaulUSA
  2. 2.Department of Ecology, Evolution, and BehaviorUniversity of MinnesotaSt. PaulUSA

Personalised recommendations