Hydrobiologia

, Volume 723, Issue 1, pp 157–165 | Cite as

Influence of fire salamander larvae on among-pool distribution of mosquito egg rafts: oviposition habitat selection or egg raft predation?

THE ROLE OF PONDS

Abstract

Many amphibian populations are in decline worldwide. Surprisingly, few studies have examined how such declines may benefit mosquitoes. Amphibian larvae may compete with and prey upon mosquito larvae, and may alter oviposition habitat selection (OHS) of mosquito adults. However, often overlooked, observed among-pool egg distributions attributed to OHS may additionally or alternatively be explained by egg predation. Temporary pools of mountainous areas of the Mediterranean serve as larval habitat for both the mosquito, Culiseta longiareolata, and the salamander, Salamandra infraimmaculata. We found Culiseta larvae and egg rafts to be highly vulnerable to predation by pre-metamorphosing Salamandra larvae, but not to metamorphosing ones. In outdoor mesocosm experiments, oviposition avoidance by Culiseta females in response to caged Salamandra was not demonstrated regardless of salamander developmental stage. Egg raft abundance was significantly reduced in free-roaming, pre-metamorphosing Salamandra but not by metamorphosing ones. Thus, Salamandra larvae may have little deterrence on Culiseta oviposition. Instead, fewer egg rafts are attributed largely to egg predation. This study highlights the importance of egg raft predation in addition to OHS when interpreting the influence of predators on prey egg distributions. It also highlights that a cost of declining amphibian populations is their reduced impacts on mosquito populations.

Keywords

Culiseta longiareolata Salamandra infraimmaculata Oviposition site selection Egg predation Risk of predation 

Supplementary material

Online Resource 1. Video of two predation events by Salamandra infraimmaculata larva on two Culiseta longiareolata egg rafts.Supplementary material 1 (MPG 2564 kb)

References

  1. Alford, R. A. & S. J. Richards, 1999. Global amphibian declines: a problem in applied ecology. Annual Review of Ecology and Systematics 30: 133–165.CrossRefGoogle Scholar
  2. Becker, N. & D. Hoffmann, 2011. First record of Culiseta longiareolata (Macquart) for Germany. European Mosquito Bulletin 29: 143–150.Google Scholar
  3. Benoy, G. A., 2008. Tiger salamanders in prairie potholes: a fish in amphibian’s garments? Wetlands 28: 464–472.CrossRefGoogle Scholar
  4. Binckley, C. A. & W. J. Resetarits Jr, 2008. Oviposition behaviour partitions aquatic landscapes along predation and nutrient gradients. Behavioral Ecology 19: 552–557.CrossRefGoogle Scholar
  5. Blank, L. & L. Blaustein, 2012. Using ecological niche modeling to predict the distributions of two endangered amphibian species in aquatic breeding sites. Hydrobiologia 693: 157–167.CrossRefGoogle Scholar
  6. Blaustein, L., 1997. Nonconsumptive effects of larval Salamandra on its crustacean prey: can eggs detect predators? Oecologia 110: 212–217.CrossRefGoogle Scholar
  7. Blaustein, L., 1998. Influence of the predatory backswimmer, Notonecta maculata, on pool community structure. Ecological Entomology 23: 246–252.CrossRefGoogle Scholar
  8. Blaustein, L., 1999. Oviposition habitat selection in response to risk of predation: consequences for populations and community structure. In Wasser, S. P. (ed.), Evolutionary Processes and Theory: Modern Perspectives. Kluwer Academic Publishers, Amsterdam: 441–456.CrossRefGoogle Scholar
  9. Blaustein, L. & J. Margalit, 1994. Mosquito larvae (Culiseta longiareolata) compete with and prey upon toad (Bufo viridis) immatures. Journal of Animal Ecology 63: 841–850.CrossRefGoogle Scholar
  10. Blaustein, L. & J. Margalit, 1996. Priority effects in temporary pools: nature and outcome of mosquito larva-toad tadpole interactions depend on order of entrance. Journal of Animal Ecology 65: 77–84.CrossRefGoogle Scholar
  11. Blaustein, L. & D. W. Whitman, 2009. Behavioral plasticity in response to risk of predation: oviposition habitat selection by a mosquito. In Ananthakrishnan, T. N. & D. Whitman (eds), Phenotypic Plasticity in Insects: Mechanisms and Consequences. Science Pub Inc., Plymouth: 263–280.Google Scholar
  12. Blaustein, L., J. Friedman & T. Fahima, 1996. Larval Salamandra drive temporary pool community dynamics: evidence from an artificial pool experiment. Oikos 76: 392–402.CrossRefGoogle Scholar
  13. Blaustein, L., M. Kiflawi, A. Eitam, M. Mangel & J. E. Cohen, 2004. Oviposition habitat selection in response to risk of predation: mode of detection consistency across experimental venue. Oecologia 138: 300–305.PubMedCrossRefGoogle Scholar
  14. Blaustein, L., R. S. Ostfeld & R. D. Holt, 2010. A community-ecology framework for understanding vector and vector-borne disease dynamics. Israel Journal of Ecology & Evolution 56: 251–262.CrossRefGoogle Scholar
  15. Blum, S., T. Basedow & N. Becker, 1997. Culicidae (Diptera) in the diet of predatory stages of anurans (Amphibia) in humid biotopes of the Rhine valley in Germany. Journal of Vector Ecology 22: 23–29.PubMedGoogle Scholar
  16. Brodman, R. & R. Dorton, 2006. The effectiveness of pond-breeding salamanders as agents of larval mosquito control. Journal of Freshwater Ecology 21: 467–474.CrossRefGoogle Scholar
  17. Chesson, J., 1984. Effect of Notonectids (Hemiptera: Notonectidae) on mosquitoes (Diptera: Culicidae): predation or selective oviposition? Environmental Entomology 13: 531–538.Google Scholar
  18. Cohen, M., D. Yeheskely-Hayon, M. R. Warburg, D. Davidson, G. Halevi & R. Sharon, 2006. Differential growth identified in salamander larvae half-sib cohorts: survival strategy? Development, Growth & Differentiation 48: 537–548.CrossRefGoogle Scholar
  19. Degani, G., 1996. Salamandra salamandra at the Southern Limit of Its Distribution. Laser Pages Publication, Kazrin.Google Scholar
  20. Devereaux, J. S. L. & A. Mokany, 2006. Visual and chemical cues from aquatic snails reduce chironomid oviposition. Australian Journal of Zoology 54: 79–86.CrossRefGoogle Scholar
  21. Dolev, A. & A. Perevolotsky (eds), 2004. The Red Book of Vertebrates in Israel. Israel Nature and National Parks Protection Authority and Society for Protection of Nature in Israel press, Jerusalem.Google Scholar
  22. DuRant, S. E. & W. A. Hopkins, 2008. Amphibian predation on larval mosquitoes. Canadian Journal of Zoology 86: 1159–1164.CrossRefGoogle Scholar
  23. Eitam, A., L. Blaustein & M. Mangel, 2002. Effects of Anisops sardea (Hemiptera: Notonectidae) on oviposition habitat selection by mosquitoes and other dipterans and community structure in artificial pools. Hydrobiologia 485: 183–189.CrossRefGoogle Scholar
  24. Eitam, A., L. Blaustein & M. Mangel, 2005. Density and intercohort priority effects on larval Salamandra salamandra in temporary pools. Oecologia 146: 36–42.PubMedCrossRefGoogle Scholar
  25. Kershenbaum, A., M. Spencer, L. Blaustein & J. E. Cohen, 2012. Modelling evolutionarily stable strategies in oviposition site selection, with varying risks of predation and intraspecific competition. Evolutionary Ecology 26: 955–974.CrossRefGoogle Scholar
  26. Lauder, G. V. & H. B. Shaffer, 1986. Functional design of the feeding mechanism in lower vertebrates: unidirectional and bidirectional flow systems in the tiger salamander. Zoological Journal of the Linnean Society 88: 277–290.CrossRefGoogle Scholar
  27. Laurila, A., J. Kujasalo & E. Ranta, 1997. Different antipredator behaviour in two anuran tadpoles: effects of predator diet. Behavioral Ecology and Sociobiology 40: 329–336.CrossRefGoogle Scholar
  28. Lee, D. K., A. P. Bhatkar, S. B. Vinson & J. K. Olson, 1994. Impact of foraging red imported fire ants (Solenopsis invicta) (Hymenoptera: Formicidae) on Psorophora columbiae eggs. Journal of the American Mosquito Control Association 10: 163–173.Google Scholar
  29. Margalit, Y., C. Dimentman & A. S. Tahori, 1988. Geographical, seasonal and ecological distribution of mosquito larvae (Diptera–Culicidae) in Southern Israel. Archiv Fur Hydrobiologie 112: 233–249.Google Scholar
  30. Markman, S., N. Hill, J. Todrank, G. Heth & L. Blaustein, 2009. Differential aggressiveness covaries with genetic similarity in fire salamander larvae. Behavioral Ecology and Sociobiology 63: 1149–1155.CrossRefGoogle Scholar
  31. Mogali, S. M., S. K. Saidpur & B. A. Bhagyashri, 2011. Levels of predation modulate antipredator defense behavior and metamorphic traits in the toad Bufo melanostictus. Journal of Herpetology 45: 428–431.CrossRefGoogle Scholar
  32. Mokany, A. & R. Shine, 2003. Competition between tadpoles and mosquito larvae. Oecologia 135: 615–620.PubMedGoogle Scholar
  33. Morin, P. J., 1980. Salamander predation and the structure of temporary pond communities. American Zoologist 20: 810.Google Scholar
  34. Morin, P. J., H. M. Wilbur & R. N. Harris, 1983. Salamander predation and the structure of experimental communities – responses of Notophthalmus and microcrustacea. Ecology 64: 1430–1436.CrossRefGoogle Scholar
  35. Munga, S., N. Minakawa, G. Zhou, O. O. J. Barrack, A. K. Githeko & G. Yan, 2006. Effects of larval competitors and predators on oviposition site selection of Anopheles gambiae sensu stricto. Journal of Medical Entomology 43: 221–224.PubMedCrossRefGoogle Scholar
  36. Reinhardt T., S. Steinfartz, A. Paetzold & M. Weitere, 2013. Linking the evolution of habitat choice to ecosystem functioning: direct and indirect effects of pond reproducing fire salamanders on aquatic–terrestrial subsidies. Oecologia (in press). doi:10.1007/s00442-013-2592-0.
  37. Resetarits, W. J., 2001. Colonization under threat of predation: avoidance of fish by an aquatic beetle, Tropisternus lateralis (Coleoptera: Hydrophilidae). Oecologia 129: 155–160.CrossRefGoogle Scholar
  38. Roberts, D., 2012. Responses of three species of mosquito larvae to the presence of predatory dragonfly and damselfly larvae. Entomologia Experimentalis et Applicata 145: 23–29.CrossRefGoogle Scholar
  39. Roiz, D., R. Eritja, R. Escosa, J. Lucientes, E. Marques, R. Melero-Alcibar, S. Ruiz & R. Molina, 2007. A survey of mosquitoes breeding in used tires in Spain for the detection of imported potential vector species. Journal of Vector Ecology 32: 10–15.PubMedCrossRefGoogle Scholar
  40. Rubbo, M. J., J. L. Lanterman, R. C. Falco & T. J. Daniels, 2011. The influence of amphibians on mosquitoes in seasonal pools: can wetlands protection help minimize disease risk? Wetlands 31: 799–804.CrossRefGoogle Scholar
  41. Segev, O. & L. Blaustein, 2007. Priority effects of the early breeding fire salamander on the late breeding banded newt. Hydrobiologia 583: 28–275.CrossRefGoogle Scholar
  42. Silberbush, A., S. Markman, E. Lewinsohn, E. Bar, J. E. Cohen & L. Blaustein, 2010. Mosquitoes use hydrocarbons to detect larval predators when selecting an oviposition site. Ecology Letters 13: 1129–1138.PubMedCrossRefGoogle Scholar
  43. Spencer, M. & L. Blaustein, 2001. Hatching responses of temporary pool invertebrates in response to environmental signals. Israel Journal of Zoology 47: 397–418.CrossRefGoogle Scholar
  44. Spencer, M., L. Blaustein & J. E. Cohen, 2002. Oviposition habitat selection by mosquitoes (Culiseta longiareolata) and consequences for population size. Ecology 83: 669–679.CrossRefGoogle Scholar
  45. Stav, G., L. Blaustein & J. Margalith, 1999. Experimental evidence for predation sensitive oviposition by a mosquito, Culiseta longiareolata. Ecological Entomology 24: 202–207.CrossRefGoogle Scholar
  46. Stav, G., L. Blaustein & Y. Margalit, 2000. Influence of nymphal Anax imperator (Odonata: Aeshnidae) on oviposition by the mosquito Culiseta longiareolata (Diptera: Culicidae). Journal of Vector Ecology 25: 190–202.PubMedGoogle Scholar
  47. Stav, G., B. P. Kotler & L. Blaustein, 2010. Foraging response to risks of predation and competition in temporary pools. Israel Journal of Ecology & Evolution 56: 9–20.CrossRefGoogle Scholar
  48. Vonesh, J. R., 2005. Egg predation and predator-induced hatching plasticity in the African reed frog, Hyperolius spinigularis. Oikos 110: 241–252.CrossRefGoogle Scholar
  49. Vonesh, J. R. & L. Blaustein, 2010. Implications of predator-induced shifts in mosquito oviposition site selection for vector control: a meta-analysis. Israel Journal of Ecology & Evolution 56: 263–279.CrossRefGoogle Scholar
  50. Warburg, M. R., 1994. Population ecology, breeding activity, longevity, and reproductive strategies of Salamandra salamandra during an 18-year long study of an isolated population on Mt. Carmel, Israel. Mertensiella 4: 399–421.Google Scholar
  51. Wellborn, G. A., D. K. Skelly & E. E. Werner, 1996. Mechanisms creating community structure across a freshwater habitat gradient. Annual Review of Ecology and Systematics 27: 337–363.CrossRefGoogle Scholar
  52. Wells, K. D., 2007. The Ecology & Behavior of Amphibians. University of Chicago Press, Chicago.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jonathan Blaustein
    • 1
  • Asaf Sadeh
    • 1
  • Leon Blaustein
    • 1
  1. 1.Community Ecology LabInstitute of Evolution and Department of Evolutionary and Environmental Biology, Faculty of Natural Sciences, University of HaifaHaifaIsrael

Personalised recommendations