, Volume 731, Issue 1, pp 19–29 | Cite as

Predicting summer surface water temperatures for large Austrian lakes in 2050 under climate change scenarios



Long-term data on surface water temperature (SWT) from 9 lakes larger than 10 km2 located in different climatic regions in Austria were analysed for June–September 1965–2009. The lakes are situated north and south of the Alps, in the east bordering Hungary and in the west bordering Germany. Time series of air temperature (AT) and SWT were smoothed by the lowess function and linear trends. Water temperature for the year 2050 was estimated from (1) linear extrapolation of the time trend, (2) projection of the AT–SWT relation and (3) increase of average present day SWT (2000–2009) by 3°C in summer in the Alps as expected from models by climatologists. Results indicate a rise in SWT parallel to AT since the mid-1960s. On an annual basis, changes in water temperature were the greatest in spring and summer. A conservative estimate of the average increase of summer SWT until 2050 is 2°C (1.2–2.9°C), differentiated by region. As a consequence of warming water temperatures, the duration of thermal stratification will increase and mixing and retention time will be affected. Changes in the food web are difficult to forecast, but will strongly depend on local environmental conditions and will therefore be different for individual lakes.


Global warming Empirical model Lake management Forecast Tourism 


  1. Arvola, L., G. George, D. M. Livingstone, M. Järvinen, T. Blenckner, M. T. Dokulil, E. Jennings, C. N. Aonghusa, P. Nõges, T. Nõges & G. Weyhenmeyer, 2010. The impact of the changing climate on the thermal characteristics of lakes. In George, G. (ed.), The Impact of Climate Change on European Lakes. Springer, Dordrecht: 85–100. ISBN978-90-461-2944-7.Google Scholar
  2. Bates, B. C., Z. W. Kundzewicz, S. Wu & J. P. Palutikof (eds), 2008. Climate Change and Water. Technical Paper, Intergovernmental Panel on Climate Change, IPCC Secretariat, Geneva: 210 pp.Google Scholar
  3. Bobek, H., W. Kurz & F. Zwitkovits, 1971. Klimatypen 1: 1 000 000. In Kommission für Raum-forschung (ed.), Atlas der Republik Österreich, Tafel III/9. Österreichische Akademie der Wissenschaften, Wien.Google Scholar
  4. Bogataj, L. K., 2007. How will the Alps respond to climate change? Scenarios for the future of alpine water. In Psenner, R. & R. Lackner (eds), Alpine Space, Vol 3: The Water Balance of the Alps. Innsbruck University Press, Innsbruck: 43–51. ISBN 978-3-902571-33-5.Google Scholar
  5. Böhm, R., R. Godina, H.-P. Nachtnebel & O. Pirker, 2008. Mögliche Klimafolgen für die Wasserwirtschaft in Österreich. In ÖWAV (ed.), Auswirkungen des Klimawandels auf die österreichische Wasserwirtschaft, BMLFUW und ÖWAV, Wien: 7–26. www.zamg.ac.at/histalp/downloads/abstract/Boehm-2008b-F.pdf. Accessed 19 Nov 2012.
  6. Brandstetter, S., H. Dürr & H. Frank (eds), 2008. Blue Austria. Federal Ministry of Agriculture, Forestry, Environment and Water Management, Vienna, Austria: 20 pp. http://www.lebens-ministerium.at/publikationen/wasser/wasserwirtschaft_wasserpolitik/Blue-Austria.html. Accessed 19 Nov 2012.
  7. Cosgrove, C. E. & W. J. Cosgrove (eds), 2012. The dynamics of global water futures. Driving forces 2011–2050. WWDR4: 1–100, UNESCO Paris. ISBN 978-92-3-001035-5. http://www.unesdoc.unesco.org/images/0021/002153/215377e.pdf. Accessed 18 Nov 2012.
  8. Dokulil, M. T., 2005. Limnology of Lake Mondsee. In Eisenreich, S. J. (ed.), Climate Change and the European Water Dimension. EC Publication, Luxembourg: 152–154. ISBN 92-894-9005-5. http://book-shop.europa.eu/en/climate-change-and-the-european-water-dimension-pbLBNA21553/. Accessed 18 Nov 2012.
  9. Dokulil, M. T., 2009. Abschätzung der klimabedingten Temperaturänderungen bis zum Jahr 2050 während der Badesaison. Österr, Bundesforste: 52 pp. http://www.oebf.at/uploads/tx_pdforder/Klimastudie_Seen_2009_Dokulil.pdf. Accessed 19 Nov 2012.
  10. Dokulil, M. T., 2013. Environmental impacts of tourism on lakes. In Ansari, A. A. & S. S. Gill (eds), Eutrophication, Causes, Consequences and Control, Vol. 2, Springer, Dordrecht (in press).Google Scholar
  11. Dokulil, M. T. & K. Teubner, 2002. The spatial coherence of alpine lakes. Verhandlungen des Internationalen Verein Limnologie 28: 1861–1864.Google Scholar
  12. Dokulil, M. T. & K. Teubner, 2011. Eutrophication and climate change: present situation and future scenarios. In Ansari, A. A., S. S. Gill, G. R. Lanza & W. Rast (eds), Eutrophication: Causes, Consequences and Control. Springer, Dordrecht: 1–16. doi:10.1007/978-90-481-9625-8_1.
  13. Dokulil, M. T. & K. Teubner, 2012. Deep living Planktothrix rubescens modulated by environmental constraints and climate forcing. Hydrobiologia 698: 29–46. doi:10.1007/s10750-012-1020-5.CrossRefGoogle Scholar
  14. Dokulil, M. T., A. Jagsch, G. D. George, A. Anneville, T. Jankowski, B. Wahl, B. Lenhart, T. Blenckner & K. Teubner, 2006. Twenty years of spatially coherent deep-water warming in lakes across Europe related to the North Atlantic Oscillation. Limnology and Oceanography 51: 2787–2793.CrossRefGoogle Scholar
  15. Dokulil, M. T., K. Teubner, A. Jagsch, U. Nickus, R. Adrian, D. Straile, T. Jankowski, A. Herzig & J. Padisák, 2010. The impact of climate change on lakes in Central Europe. In George, G. (ed.), The Impact of Climate Change on European Lakes. Springer, Dordrecht: 387–409. ISBN978-90-461-2944-7.Google Scholar
  16. Elo, A.-R., T. Huttula, A. Peltonen & J. Virta, 1998. The effects of climate change on the temperature conditions of lakes. Boreal Environment Research 3: 137–150.Google Scholar
  17. Formayer, H., P. Haas, C. Matulla, A. Frank, & P. Seibert, 2005. Analysen von Hitze und Trockenheit und deren Auswirkungen in Österreich. Teilprojekt von StartClim2004. 30 S. http://www.austroclim.at/startclim/.
  18. George, G., U. Nickus, M. T. Dokulil & T. Blenckner, 2010. The influence in the atmospheric circulation on the surface temperature of lakes. In George, G. (ed.), The Impact of Climate Change on European Lakes. Springer, Dordrecht: 293–310. ISBN978-90-461-2944-7.Google Scholar
  19. Hammond, D., & A. R. Pryce, 2007. Climate change impacts and water temperature. Science Report SC060017SR, pp. 111, Environment Agency, Bristol. ISBN: 978-1-84432-802-4 www.environ-ment-agency.gov.uk. Accessed 18 Nov 2012.
  20. Hondzo, M. & H. G. Stefan, 1993. Regional water temperature characteristics of lakes subjected to climate change. Climatic Change 24: 187–211.CrossRefGoogle Scholar
  21. Komatsu, E., T. Fukushime & H. Harasawa, 2007. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecological Modelling 209: 351–366.CrossRefGoogle Scholar
  22. Lee, H. W., E. J. Kim, S. S. Park & J. H. Choi, 2012. Effects of climate change on the thermal structure of lakes in the Asian Monsoon Area. Climate Change 112: 859–880.CrossRefGoogle Scholar
  23. Livingstone, D. M. & M. T. Dokulil, 2001. Eighty years of spatially coherent Austrian lake surface temperatures and their relationship to regional air temperature and the North Atlantic Oscillation. Limnology and Oceanography 47: 1220–1227.CrossRefGoogle Scholar
  24. Livingstone, D. M., R. Adrian, L. Arvola, T. Blenckner, M. T. Dokulil, R. E. Hari, G. George, T. Jankowski, M. Järvinen, E. Jennings, P. Nõges, T. Nõges & D. Straile, 2010. Regional and supra-regional coherence in limnological variables. In George, G. (ed.), The Impact of Climate Change on European Lakes. Springer, Dordrecht: 311–338. ISBN978-90-461-2944-7.Google Scholar
  25. MacKay, M. D., P. J. Neale, C. D. Arp, L. N. De Senerpont Domis, X. Fang, G. Gal, K. D. Jöhnk, G. Kirillin, J. D. Lenters, E. Litchman, S. MacIntyre, P. Marsh, J. Melack, W. M. Mooij, F. Peeters, A. Quesada, S. G. Schladow, M. Schmid, C. Spence & S. L. Stokes, 2009. Modeling lakes and reservoirs in the climate system. Limnology and Oceanography 54: 2315–2329.CrossRefGoogle Scholar
  26. Matulla, C., 2009. The Climate of the Century Ahead. Alpine Space–Man & Environment, Vol. 6:165–180 (in German). Innsbruck University Press, Innsbruck. ISBN 978-3-902571-89-2.Google Scholar
  27. Matulla, C., H. Formayer, P. Haas & H. Kromp-Kolb, 2004. Possible climate trends in the first half of the 21st century. Österreichische Wasser- und Abfallwirtschaft 16: 1–9. in German.Google Scholar
  28. McCormick, M. J. & G. L. Fahnenstiel, 1999. Recent climatic trends in nearshore water temperatures in the St. Lawrence Great Lakes. Limnology and Oceanography 44: 530–540.CrossRefGoogle Scholar
  29. Mironov, D. V., 1991. Air–water interaction parameters over lakes. In Zilitinkevich, S. S. (ed.), Modeling Air–Lake Interaction. Physical Background. Springer, Berlin: 50–62.Google Scholar
  30. O’Reilly, C. M., S. R. Alin, P.-D. Plisnier, A. S. Cohen & B. A. McKee, 2003. Climate change decreases aquatic ecosystem productivity of Lake Tanganyika, Africa. Nature 424: 766–768.PubMedCrossRefGoogle Scholar
  31. Oesch, D., A. Hauser & S. Wunderle, 2004. Validation of alpine lake surface temperatures derived from NOAA AVHRR AND MODIS data. P4.14, 13th Conference on Satellite Meteorology and Oceanography. AMS, Norfolk, USA. https://ams.confex.com/ams/pdfpapers/88236.pdf. Accessed 19 Nov 2012.
  32. Persson, I., I. Jones, J. Sahlberg, M. Dokulil, D. Hewitt, M. Leppäranta & T. Blenckner, 2005. Modeled thermal response of three European lakes to a probable future climate. Verhandlungen des Internationalen Verein Limnologie 29: 667–671.Google Scholar
  33. Rodinger, W. (ed.), 2009. Seenatlas. Natürliche und künstliche Seen Österreichs größer als 50 ha. BA Wasserwirtschaft Band 33. ISBN: 3-901605-33-9 http://www.baw.at/index.php?lang=de&seite=91. Accessed 16 Nov 2012.
  34. Samuelsson, P., E. Kourzeneva & D. Mironov, 2010. The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environment Research 15: 113–129.Google Scholar
  35. Schneiderman, E., M. Järvinen, E. Jennings, L. May, K. Moore, P.S. Naden & D. Pierson, 2010. Modeling the effects of climate change on catchment hydrology with the GWLF model. In George, G. (ed.), The Impact of Climate Change on European Lakes. Springer, Dordrecht: 33–50. ISBN978-90-461-2944-7.Google Scholar
  36. Schröter, D., W. Cramer, R. Leemans, et al., 2005. Ecosystem service supply and vulnerability to global change in Europe. Science 310: 1333–1337.PubMedCrossRefGoogle Scholar
  37. Systat Software, 2011. SigmaPlot 12. www.sigmaplot.com. Accessed 16 Nov 2012.
  38. Tranvik, L. J., J. A. Downing, J. B. Cotner, S. A. Loiselle, R. G. Striegl, T. J. Ballatore, P. Dillon, K. Finlay, K. Fortino, L. B. Knoll, P. L. Kortelainen, T. Kutser, S. Larsen, I. Laurion, D. M. Leech, S. L. Mc Callister, D. M. McKnight, J. M. Melack, E. Overholt, J. A. Porter, Y. Prairie, W. H. Renwick, F. Roland, B. S. Sherman, D. W. Schindler, S. Sobek, A. Tremblay, M. J. Vanni, A. M. Verschoor, E. von Wachenfeldt & G. A. Weyhenmeyer, 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnology and Oceanography 54: 2298–2314.Google Scholar
  39. Trumpickas, J., B. J. Shuter & C. K. Minn, 2008. Potential changes in future surface water temperatures in the Ontario Great Lakes as a result of climate change. Res. Info. Note 7:1–8. http://www.mnr.gov.on.ca/en/Business/ClimateChange/index.html. Accessed 24 Nov 2012.
  40. Verburg, P., R. E. Hecky & H. Kling, 2003. Ecological consequences of a century of warming in Lake Tanganyika. Science 301: 505–507.PubMedCrossRefGoogle Scholar
  41. Vollmer, M. K., H. A. Bootsma, R. E. Hecky, G. Patterson, J. D. Halfman, J. M. Edmond, D. H. Eccles & R. F. Weiss, 2005. Deep-water warming trend in Lake Malawi, East Africa. Limnology and Oceanography 50: 727–732.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Institute for Limnology, University of InnsbruckMondseeAustria

Personalised recommendations