, Volume 714, Issue 1, pp 85–92 | Cite as

Clay- and algae-induced effects on biomass, cell size and toxin concentration of a brackish-water cyanobacterium

  • Jonna Engström-ÖstEmail author
  • Sari Repka
  • Andreas Brutemark
  • Aija Nieminen
Primary Research Paper


We studied if biomass, cell dimensions and microcystin concentration of the cyanobacterium Anabaena sp. (strain BIR 257; recently also referred to as Dolichospermum) change in the presence of turbidity caused by clay and a eukaryotic green algal species. Anabaena sp. was incubated in experimental lab bioassays, with added clay and the chlorophyte Brachiomonas submarina. A control was established containing a single species of Anabaena sp. Biomass of Anabaena, given as carbon concentration increased in response to clay addition, suggesting that Anabaena was stimulated by lower light conditions whereas B. submarina was not. Cell lengths increased most likely as a response to lower light conditions. Dissolved toxin concentration decreased in treatments containing clay. Increased clay turbidity may favour the cyanobacterium Anabaena sp. over its eukaryotic competitors in the future Baltic Sea, especially in low-salinity estuaries.


Cyanobacteria Microcystin Carbon concentration Cell length Chlorophyte Turbidity Climate change 



We thank the staff at Tvärminne Zoological Station (University of Helsinki). Funding from the Academy of Finland (projects 125251, 255566), Maj and Tor Nessling Foundation, Walter och Andrée de Nottbecks Stiftelse and R & D Institute Aronia are acknowledged.


  1. BACC Author Team, 2008. Assessment of Climate Change for the Baltic Sea Basin. Springer, Berlin.Google Scholar
  2. Backer, H., 2011. Transboundary maritime spatial planning: a Baltic Sea perspective. Journal of Coastal Conservation 15: 279–289.CrossRefGoogle Scholar
  3. Brutemark, A., J. Engström-Öst & A. Vehmaa, 2011. Long-term monitoring data reveal pH dynamics, trends and variability in the western Gulf of Finland. Oceanological and Hydrobiological Studies 40: 91–94.CrossRefGoogle Scholar
  4. Burkholder, J. M. & B. E. Cuker, 1991. Response of periphyton communities to clay and phosphate loading in a shallow reservoir. Journal of Phycology 27: 373–384.CrossRefGoogle Scholar
  5. De Nobel, W. T. (Pim), H. C. P. Matthijs, E. von Elert & L. R. Mur, 1998. Comparison of light-limited growth of the nitrogen-fixing cyanobacteria Anabaena and Aphanizomenon. New Phytologist 138: 579–587.Google Scholar
  6. Dowell Kearns, K. & M. D. Hunter, 2000. Green algal extracellular products regulate antialgal toxin production in a cyanobacterium. Environmental Microbiology 2: 291–297.CrossRefGoogle Scholar
  7. Engström-Öst, J., S. Repka & M. Mikkonen, 2011. Interactions between plankton and cyanobacterium Anabaena with focus on salinity, growth and toxin production. Harmful Algae 10: 530–535.CrossRefGoogle Scholar
  8. Graham, L. P., 2004. Climate change effects on river flow to the Baltic Sea. Ambio 33: 235–241.PubMedGoogle Scholar
  9. Grasshoff, K., 1976. Methods of Seawater Analysis. Verlag Chemie, Weinheim.Google Scholar
  10. Guillard, R. R. L. & J. H. Ryther, 1962. Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea Cleve. Canadian Journal of Microbiology 8: 229–239.PubMedCrossRefGoogle Scholar
  11. Hagström, J. A. & E. Granéli, 2005. Removal of Prymnesium parvum (Haptophyceae) cells under different nutrient conditions by clay. Harmful Algae 4: 249–260.CrossRefGoogle Scholar
  12. Halinen, K., J. Jokela, D. P. Fewer, M. Wahlsten & K. Sivonen, 2007. Direct evidence for production of microcystins by Anabaena strains from the Baltic Sea. Applied and Environmental Microbiology 73: 6543–6550.PubMedCrossRefGoogle Scholar
  13. Halinen, K., D. P. Fewer, L. M. Sihvonen, C. Lyra, E. Eronen & K. Sivonen, 2008. Genetic diversity in strains of the genus Anabaena isolated from planktonic and benthic habitats of the Gulf of Finland (Baltic Sea). FEMS Microbiology Ecology 64: 199–208.PubMedCrossRefGoogle Scholar
  14. Huisman, J., R. R. Jonker, C. Zonneveld & F. J. Weissing, 1999. Competition for light between phytoplankton species: experimental tests of mechanistic theory. Ecology 80: 211–222.CrossRefGoogle Scholar
  15. Kaebernick, M., B. A. Neilan, T. Börner & E. Dittman, 2000. Light and the transcriptional response of the microcystin biosynthesis gene cluster. Applied and Environmental Microbiology 66: 3387–3392.PubMedCrossRefGoogle Scholar
  16. Kankaanpää, H. T., O. Sjövall, M. Huttunen, M. Olin, K. Karlsson, K. Hyvärinen, L. Sneitz, J. Härkönen, V. O. Sipiä & J. A. O. Meriluoto, 2009. Production and sedimentation of peptide toxins nodularin-R and microcystin-LR in the northern Baltic Sea. Environmental Pollution 157: 1301–1309.PubMedCrossRefGoogle Scholar
  17. Kjellström, E. & K. Ruosteenoja, 2007. Present-day and future precipitation in the Baltic Sea region as simulated in a suite of regional climate models. Climate Change 81: 281–291.CrossRefGoogle Scholar
  18. Kótai, J., 1972. Instructions for preparation of modified nutrient solution Z8 for algae. Norwegian Institute of Water Research Oslo B. 11: 1–5.Google Scholar
  19. Lehtimäki, J., 2000. Characterization of cyanobacterial strains originating from the Baltic Sea with emphasis on Nodularia and its toxin, nodularin. Ph.D. thesis, University of Helsinki, Finland.Google Scholar
  20. Metcalf, J. S. & G. A. Codd, 2003. Analysis of cyanobacterial toxins by immunological methods. Chemical Research in Toxicology 16: 103–112.PubMedCrossRefGoogle Scholar
  21. Miller, M. J., J. Hutson & F. J. Fallowfield, 2005. The adsorption of cyanobacterial hepatoxins as a function of soil properties. Journal of Water Health 3: 339–347.Google Scholar
  22. Mitrovic, S. M., L. C. Bowling & R. T. Buckney, 2001. Vertical disentrainment of Anabaena circinalis in the turbid, freshwater Darling River, Australia: quantifying potential benefits from buoyancy. Journal of Plankton Research 23: 47–55.CrossRefGoogle Scholar
  23. Møgelhøj, M. K., P. J. Hansen, P. Henriksen & N. Lundholm, 2006. High pH and not allelopathy may be responsible for negative effects of Nodularia spumigena on other algae. Aquatic Microbial Ecology 43: 43–54.CrossRefGoogle Scholar
  24. Morris, R. J., D. E. Williams, H. A. Luu, C. F. B. Holmes, R. J. Andersen & S. E. Calvert, 2000. The adsorption of microcystin-LR by natural clay particles. Toxicon 38: 303–308.CrossRefGoogle Scholar
  25. Mur, L. R., O. M. Skulberg & H. Utkilen, 1999. Cyanobacteria in the environment. In Chorus, I. & J. Bartram (eds), Toxic Cyanobacteria in Water. E & FN Spon, London: 15–40.Google Scholar
  26. Na, G., W. Choi & Y. Chun, 1996. A study on red-tide control with loess suspension. Journal of Aquaculture 9: 239–245.Google Scholar
  27. Neumann, T., 2010. Climate change effects on the Baltic Sea ecosystem: a model study. Journal of Marine Systems 81: 213–224.CrossRefGoogle Scholar
  28. Nixon, S. W., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41: 199–219.Google Scholar
  29. O’Neil, J. M., T. W. Davis, M. A. Burford & C. J. Gobler, 2012. The rise of harmful cyanobacteria blooms: the potential roles of eutrophication and climate change. Harmful Algae 14: 313–334.CrossRefGoogle Scholar
  30. Olenina, I., S. Hajdu, L. Edler, A. Andersson, N. Wasmund, S. Busch, J. Göbel, S. Gromisz, S. Huseby, M. Huttunen, A. Jaanus, P. Kokkonen, I. Ledaine & E. Niemkiewicz, 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. In: HELCOM Baltic Sea Environment Proceedings 106: 1–142.Google Scholar
  31. Otten, T. G., H. Xu, B. Qin, G. Zhu & H. W. Paerl, 2012. Spatiotemporal patterns and ecophysiology of toxigenic Microcystis blooms in Lake Taihu, China: implications for water quality management. Environmental Science and Technology 46: 3480–3488.PubMedCrossRefGoogle Scholar
  32. Quraishi, F. O. & C. P. Spencer, 1971. Studies on the growth of some marine unicellular algae under different artificial light sources. Marine Biology 8: 60–65.CrossRefGoogle Scholar
  33. Repka, S., M. Koivula, V. Harjunpä, L. Rouhiainen & K. Sivonen, 2004. Effects of phosphate and light on growth and bioactive peptide production by the cyanobacterium Anabaena strain 90 and its anabaenopeptilide mutant. Applied and Environmental Microbiology 70: 4551–4560.PubMedCrossRefGoogle Scholar
  34. Ruffin, K. K., 1998. The persistence of anthropogenic turbidity plumes in a shallow water estuary. Estuarine Coastal and Shelf Science 47: 579–592.CrossRefGoogle Scholar
  35. Sengco, M. R., J. Hagström, E. Granéli & D. M. Anderson, 2005. Removal of Prymnesium parvum (Haptophyceae) and its toxins using clay minerals. Harmful Algae 4: 261–274.CrossRefGoogle Scholar
  36. Suikkanen, S., M. Laamanen & M. Huttunen, 2007. Long-term changes in summer phytoplankton communities of the open northern Baltic Sea. Estuarine Coastal and Shelf Science 71: 580–592.CrossRefGoogle Scholar
  37. Tillett, D., E. Dittmann, M. Erhard, H. von Döhren, T. Börner & B. A. Neilan, 2000. Structural organization of microcystin biosynthesis in Microcystis aeruginosa PCC7806: an integrated peptide–polyketide synthetase system. Chemical Biology 7: 753–764.CrossRefGoogle Scholar
  38. Vaitomaa, J., 2006. The effects of environmental factors on biomass and microcystin production by the freshwater cyanobacterial genera Microcystis and Anabaena. Ph.D. thesis, University of Helsinki, Finland.Google Scholar
  39. Verspagen, J. M. H., P. M. Visser & J. Huisman, 2006. Aggregation with clay causes sedimentation of the buoyant cyanobacteria Microcystis spp. Aquatic Microbial Ecology 44: 165–174.CrossRefGoogle Scholar
  40. Wasmund, N., J. Tuimala, S. Suikkanen, L. Vandepitte & A. Kraberg, 2011. Long-term trends in phytoplankton composition in the western and central Baltic Sea. Journal of Marine Systems 87: 145–159.CrossRefGoogle Scholar
  41. Westwood, K. J. & G. G. Ganf, 2004. Effect of mixing patterns and light doses on growth of Anabaena circinalis in a turbid, lowland river. River Research Applications 20: 115–126.CrossRefGoogle Scholar
  42. Wetzel, R. G. & G. E. Likens, 2000. Limnological Analysis. Springer, New York.CrossRefGoogle Scholar
  43. Yan, H., P. Gang, H. Zou, X. Li & H. Chen, 2004. Effective removal of microcystins using carbon nanotubes embedded with bacteria. Chinese Science Bulletin 49: 1694–1698.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Jonna Engström-Öst
    • 1
    Email author
  • Sari Repka
    • 2
  • Andreas Brutemark
    • 1
    • 3
  • Aija Nieminen
    • 4
  1. 1.Aronia Coastal Zone Research TeamYrkeshögskolan Novia & Åbo AkademiEkenäsFinland
  2. 2.Centre for Maritime Studies, Environmental Research and Regional DevelopmentUniversity of TurkuPoriFinland
  3. 3.Tvärminne Zoological StationHangöFinland
  4. 4.Section of Ecology, Department of BiologyUniversity of TurkuTurkuFinland

Personalised recommendations