Hydrobiologia

, Volume 735, Issue 1, pp 221–231 | Cite as

Comparative study of the genotoxic response of freshwater mussels Unio tumidus and Unio pictorum to environmental stress

  • Branka Vuković-Gačić
  • Stoimir Kolarević
  • Karolina Sunjog
  • Jelena Tomović
  • Jelena Knežević-Vukčević
  • Momir Paunović
  • Zoran Gačić
FRESHWATER BIVALVES

Abstract

Genotoxic response of freshwater mussels U. tumidus and U. pictorum to environmental stress was studied using comet assay on hemocytes and gill cells. The mussels were acclimated to controlled laboratory conditions for 10 days, and then exposed at 4 sites in the Sava and Danube rivers in the area of the city of Belgrade. Samples of each species were taken after 7, 14, and 30 days of exposure. The mussels sampled immediately after acclimation served as controls. Genotoxic response in both species was induced earlier at sites receiving untreated wastewaters from the city’s main collectors (7 days), than at the site receiving only domestic wastewaters from small settlements located upstream from the city (30 days). There was a correlation between the comet tail intensity values in tissues of exposed mussels and the concentrations of zinc, copper, iron, and arsenic at the exposure sites. The genotoxic responses in both tissues of U. pictorum and in hemocytes of U. tumidus were similar, while U. tumidus gill cells failed to exhibit significant genotoxic response at two sites. These findings, together with higher mortality of U. tumidus at the most polluted sites, promote U. pictorum as a model for genotoxicity monitoring in freshwater environments.

Keywords

Unio pictorum Unio tumidus Comet assay 

References

  1. Ahmed, M. K., M. Habibullah-Al-Mamun, M. A. Hossain, M. Arif, E. Parvin, M. S. Akter, M. S. Khan & M. M. Islam, 2011. Assessing the genotoxic potentials of arsenic in tilapia (Oreochromis mossambicus) using alkaline comet assay and micronucleus test. Chemosphere 84: 143–149.PubMedCrossRefGoogle Scholar
  2. Aldridge, D. C., 1999. The morphology, growth and reproduction of Unionidae (Bivalvia) in a Fenland waterway. Journal of Molluscan Studies 65: 47–60.CrossRefGoogle Scholar
  3. Ali, D., S. Alarifi, S. Kumar, M. Ahamed & M. A. Siddiqui, 2012. Oxidative stress and genotoxic effect of zinc oxide nanoparticles in freshwater snail Lymnaea luteola L. Aquatic Toxicology 15: 124–125.Google Scholar
  4. Amiard, J. C., C. Amiard-Triquet, S. Barka, J. Pellerin & P. S. Rainbow, 2006. Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquatic Toxicology 76: 160–202.PubMedCrossRefGoogle Scholar
  5. Andral, B., J. Y. Stanisiere, D. Sauzade, E. Damier, H. Thebault, F. Galgani & P. Boissery, 2004. Monitoring chemical contamination levels in the Mediterranean based on the use of mussel caging. Marine Pollution Bulletin 49: 704–712.PubMedCrossRefGoogle Scholar
  6. Arbuckle, K. E. & J. A. Downing, 2002. Freshwater mussel abundance and species richness: GIS relationships with watershed land use and geology. Canadian Journal of Fisheries and Aquatic Sciences 59: 310–316.CrossRefGoogle Scholar
  7. Bagdonas, E. & M. Z. Vosyliene, 2006. A study of toxicity and genotoxicity of copper, zinc and their mixture to rainbow trout (Oncorhynchus Mykiss). Biologija 1: 8–13.Google Scholar
  8. Bauer, G. & K. Wachtler, 2001. Ecology and evolution of the freshwater mussels unionoida. In Bauer, G. & K. Wachtler. (eds), Ecological Studies. Vol. 145. Berlin: Springer.Google Scholar
  9. Bauer, G., S. Hochwald & W. Silkenat, 1991. Spatial distribution of freshwater mussels: the role of host fish and metabolic rate. Freshwater Biology 26: 377–386.CrossRefGoogle Scholar
  10. Binelli, A., C. Riva & A. Provini, 2007. Biomarkers in zebra mussel for monitoring and quality assessment of Lake Maggiore (Italy). Biomarkers 12: 349–368.PubMedCrossRefGoogle Scholar
  11. Bocquené, G., S. Chantereau, C. Clérendeau, E. Beausir, D. Ménard, B. Raffin, C. Minier, T. Burgeot, A. P. Leszkowicz & J. F. Narbonne, 2004. Biological effects of the “Erika” oil spill on the common mussel (Mytilus edulis). Aquatic Living Resources 17: 309–316.CrossRefGoogle Scholar
  12. Bolognesi, C., A. Buschini, E. Branchi, P. Carboni, M. Furlini, A. Martino, M. Monteverde, P. Poli & C. Rossi, 2004. Comet and micronucleus assays in zebra mussel cells for genotoxicity assessment of surface drinking water treated with three different disinfectants. Science of the Total Environment 333: 127–136.PubMedCrossRefGoogle Scholar
  13. Claxton, L. D., V. S. Houk & T. J. Hughes, 1998. Genotoxicity of industrial wastes and effluents. Mutation Research 410: 237–243.PubMedCrossRefGoogle Scholar
  14. Coffinet, S., C. Cossu-Leguille, A. Bassères, J. F. Gonnet & P. Vasseur, 2008. Response of the bivalve Unio tumidus and freshwater communities in artificial streams for hazard assessment of methyl methacrylate. Environmental Toxicology and Chemistry 27: 1371–1382.PubMedCrossRefGoogle Scholar
  15. Collins, A. R., A. Oscoz, G. Brunborg, I. Gaiva, L. Giovannelli, M. Kruszewski, C. C. Smith & R. Stetina, 2008. The comet assay: topical issues. Mutagenesis 23: 143–151.Google Scholar
  16. Conners, E. D. & C. M. Black, 2004. Evaluation of lethality and genotoxicity in the freshwater mussel Utterbackia imbecillis (Bivalvia: Unionidae) exposed singly and in combination to chemicals used in Lawn Care. Archives of Environmental Contamination and Toxicology 46: 362–371.PubMedCrossRefGoogle Scholar
  17. Cossu, C., A. Doyotte, M. Babut, A. Exinger & P. Vasseur, 2000. Antioxidant biomarkers in freshwater bivalves, Unio tumidus, in response to different contamination profiles of aquatic sediments. Ecotoxicology and Environmental Safety 45: 106–121.PubMedCrossRefGoogle Scholar
  18. De Kock, W. C. & K. J. M. Kramer, 1994. Active biomonitoring (ABM) by translocation of Bivalves mollusks. In Kramer, K. J. M. (ed.), Biomonitoring of Coastal Waters and Estuaries. CRC Press, Boca Raton, FL: 51–84.Google Scholar
  19. De Lafontaine, Y., F. Gagne, C. Blaise, G. Costan, P. Gagnon & H. M. Chan, 2000. Biomarkers in zebra mussels (Dreissena polymorpha) for the assessment and monitoring of water quality of the St Lawrence River (Canada). Aquatic Toxicology 50: 51–71.PubMedCrossRefGoogle Scholar
  20. Dixon, D. R., A. M. Pruski, L. R. J. Dixon & A. N. Jha, 2002. Marine invertebrate eco-genotoxicity: a methodological overview. Mutagenesis 17: 495–507.PubMedCrossRefGoogle Scholar
  21. European Commission, 2006. Directive 2006/7/EEC, Directive concerning management of bathing water quality and repealing Directive 76/160/EEC. Official Journal of European Communities L. 64: 37–51.Google Scholar
  22. Ferrari, B., N. Paxeus, R. Lo Giudice, A. Pollio & J. Garric, 2003. Ecotoxicological impact of pharmaceuticals found in treated waste waters: study of carbamazepine, clofibric acid and diclofenac. Ecotoxicology and Environmental Safety 55: 359–370.PubMedCrossRefGoogle Scholar
  23. Grover, S. & S. Kaur, 1999. Genotoxicity of wastewater samples from sewage and industrial effluent detected by the Allium root anaphase aberration and micronucleus assays. Mutation Research 426: 183–188.PubMedCrossRefGoogle Scholar
  24. Guidi, P., G. Frenzilli, M. Benedetti, M. Bernardeschi, A. Falleni, D. Fattorini, F. Regoli, V. Scarcelli & M. Nigro, 2010. Antioxidant, genotoxic and lysosomal biomarkers in the freshwater bivalve (Unio pictorum) transplanted in a metal polluted river basin. Aquatic Toxicology 100: 75–83.PubMedCrossRefGoogle Scholar
  25. Halling, S., N. Nors, P. F. Lanzky, F. Ingerslev, L. Holten & S. E. Jorgensen, 1998. Occurrence, fate and effects of pharmaceutical substances in the environment—a review. Chemosphere 36: 357–393.CrossRefGoogle Scholar
  26. ICPDR, 2002. Water Quality in the Danube River Basin. TNMN Yearbook 2002. http://www.icpdr.org/icpdr-pages/tnmn_yearbooks.htm.
  27. Jha, A. N., 2004. Genotoxicological studies in aquatic organisms: an overview. Mutation Research 552: 1–17.PubMedCrossRefGoogle Scholar
  28. Jha, A. N., 2008. Ecotoxicological application and significance of the comet assay. Mutagenesis 23: 207–221.PubMedCrossRefGoogle Scholar
  29. Klobučar, G., M. Pavlica, R. Erben & D. Papeš, 2003. Application of the micronucleus and comet assays to mussel Dreissena polymorpha haemocytes for genotoxicity monitoring of freshwater environments. Aquatic Toxicology 64: 15–23.PubMedCrossRefGoogle Scholar
  30. Klobučar, G., A. Štambuk, K. Hylland & M. Pavlica, 2008. Detection of DNA damage in haemocytes of Mytilus galloprovincialis in the coastal ecosystems of Kaštela and Trogir Bays, Croatia. Science and Total Environment 405: 330–337.CrossRefGoogle Scholar
  31. Kolarević, S., J. Knežević-Vukčević, M. Paunović, J. Tomović, Z. Gačić & B. Vuković-Gačić, 2011. Antropogenic impact on water quality of the River Danube in Serbia: microbiological analysis and genotoxicity monitoring. Archives of Biological Science 63: 1209–1217.CrossRefGoogle Scholar
  32. Lehtonen, K. K., D. Schiedek, A. Köhler, T. Lang, P. J. Vuorinen, L. Förlin, J. Barŝiené, J. Pempkowiak & J. Gercken, 2006. The BEEP project in the Baltic Sea: overview of results and outline for a regional biological effects monitoring strategy. Marine Pollution Bulletin 53: 523–537.PubMedCrossRefGoogle Scholar
  33. Makala, P. & A. O. J. Oikari, 1990. Uptake and body distribution of chlorinated phenolic in the freshwater mussel, Anodonta atina L. Ecotoxicology and Environmental Safety 20: 354–362.CrossRefGoogle Scholar
  34. Millward, G. E., S. Kadam & A. N. Jha, 2012. Tissue-specific assimilation, depuration and toxicity of nickel in Mytilus edulis. Environmental Pollution 162: 406–412.PubMedCrossRefGoogle Scholar
  35. Nigro, M., A. Falleni, I. Del Barga, V. Scarcelli, P. Lucchesi, F. Regoli & G. Frenzilli, 2006. Cellular biomarkers for monitoring estuarine environments: transplanted versus native mussels. Aquatic Toxicology 77: 339–347.PubMedCrossRefGoogle Scholar
  36. Olive, P. L. & P. B. Judit, 2006. The comet assay: a method to measure DNA damage in individual cells. British Columbia Cancer Research Center. doi:10.1038/nprot.2006.5675.
  37. Pampanin, D. M., L. Camus, A. Gomiero, I. Marangon, E. Volpato & C. Nasci, 2005. Susceptibility to oxidative stress of mussels (Mytilus galloprovincialis) in the Venice Lagoon (Italy). Marine Pollution Bulletin 50: 1548–1557.PubMedCrossRefGoogle Scholar
  38. Parolini, M., A. Binelli & A. Provini, 2011. Assessment of the potential cyto-genotoxicity of the nonsteroidal anti-inflammatory drug (NSAID) diclofenac on the zebra mussel (Dreissena polymorpha). Water, Air, Soil, Pollution 217: 589–601.CrossRefGoogle Scholar
  39. Pavlica, M., G. Klobučar, N. Mojaš, R. Erben & D. Papeš, 2001. Detection of DNA damage in haemocytes of zebra mussel using comet assay. Mutation Research 490: 209–214.PubMedCrossRefGoogle Scholar
  40. Ramírez, O. A. & F. P. García, 2005. Genotoxic damage in zebra fish (Danio rerio) by arsenic in waters from Zimapan, Hidalgo, Mexico. Mutagenesis 20: 291–295.PubMedCrossRefGoogle Scholar
  41. Ravera, O., 2001. Monitoring of the aquatic environment by species accumulators of pollutants: a review, in: Ravera, O. (eds), Scientific and legal aspects of biological monitoring in freshwater. Journal of Limnology 60: 63–72.Google Scholar
  42. Regoli, F., G. Frenzilli, R. Bocchetti, F. Annarumma, V. Scarcelli, D. Fattorini & M. Nigro, 2004. Time-course variations of oxyradical metabolism, DNA integrity and lysosomal stability in mussels, Mytilus galloprovincialis during a field translocation experiment. Aquatic toxicology 68: 167–178.PubMedCrossRefGoogle Scholar
  43. Richardson, M. L. & J. M. Bowron, 1985. The fate of pharmaceutical chemicals in the aquatic environment. Journal of Pharmacy and Pharmacology 37: 1–12.PubMedCrossRefGoogle Scholar
  44. Rocher, B., J. Le Goff, L. Peluhet, M. Briand, H. Manduzio & J. Gallois, 2006. Genotoxicant accumulation and cellular defence activation in bivalves chronically exposed to waterborne contaminants from the Seine River. Aquatic Toxicology 79: 65–77.PubMedCrossRefGoogle Scholar
  45. Roméo, M., P. Hoarau, G. Garello, M. Gnassia-Barelli & J. P. Girard, 2003. Mussel transplantation and biomarkers as useful tools for assessing water quality in the NW Mediterranean. Environmental Pollution 122: 369–378.PubMedCrossRefGoogle Scholar
  46. Schwalb, A. N. & M. T. Pusch, 2007. Horizontal and vertical movements of unionid mussels in a lowland river. Journal of the North American Benthological Society 26: 261–272.CrossRefGoogle Scholar
  47. Singh, N. P., M. T. McCoy, R. R. Tice & E. L. Schneider, 1988. A simple technique for quantitation of low levels of DNA damage in individual cells. Experimental Cell Research 175: 184–191.PubMedCrossRefGoogle Scholar
  48. Smolders, R., L. Bervoets, V. Wepener & R. Blust, 2003. A conceptual framework for using mussels as biomonitors in whole effluent toxicity. Human and Ecological Risk Assessment 9: 741–760.CrossRefGoogle Scholar
  49. Soares-da-Silva, I. M., J. Ribeiro, C. Valongo, R. Pinto, M. Vilanova, R. Bleher & J. Machado, 2002. Cytometric, morphologic and enzymatic characterization of haemocytes in Anodonta cygnea. Comp. Biochem Physiol. Part A: Mol. Integr. Physiol. 132: 541–553.Google Scholar
  50. Štambuk, A., M. Pavlica, L. Malović & G. Klobučar, 2008. Persistance of DNA damage in the freshwater mussel Unio pictorum upon exposure to ethyl methanesulphonate and hydrogen peroxide. Environmental and Molecular Mutagenesis 49: 217–225.PubMedCrossRefGoogle Scholar
  51. Štambuk, A., M. Pavlica, G. Vignjević, B. Bolarić & G. Klobučar, 2009. Assessment of genotoxicity in polluted freshwaters using caged painter’s mussel, Unio pictorum. Ecotoxicology 18: 430–439.PubMedCrossRefGoogle Scholar
  52. StatSoft, Inc., 2001. STATISTICA for Windows [Computer program manual]. Tulsa, OK: StatSoft, Inc., http://www.statsoft.com.
  53. Sunjog, K., Z. Gačić, S. Kolarević, Z. Višnjić-Jeftić, I. Jarić, J. Knežević-Vukčević, B. Vuković-Gačić, & M. Lenhardt, 2012. Heavy metal accumulation and the genotoxicity in Barbel (Barbus barbus) as indicators of the Danube river pollution. The Scientific World Journal. doi:10.1100/2012/351074.
  54. Viarengo, A., D. Lowe, C. Bolognesi, E. Fabbri & A. Koehler, 2007. The use of biomarkers in biomonitoring: a 2-tier approach assessing the level of pollutant-induced stress syndrome in sentinel organisms. Comparative biochemistry and physiology. Toxicology & Pharmacology 146: 281–300.Google Scholar
  55. White, P. & J. B. Rasmussen, 1998. The genotoxic hazard of domestic wastes in surface waters. Mutation Research 410: 223–236.PubMedCrossRefGoogle Scholar
  56. Wilson, J. T., P. L. Pascoe, J. M. Parry & D. R. Dixon, 1998. Evaluation of the comet assay as a method for the detection of DNA damage in the cells of a marine invertebrate, Mytilus edulis L. (Mollusca: Pelecypoda). Mutation Research 399: 87–95.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Branka Vuković-Gačić
    • 1
  • Stoimir Kolarević
    • 1
  • Karolina Sunjog
    • 1
    • 3
  • Jelena Tomović
    • 2
  • Jelena Knežević-Vukčević
    • 1
  • Momir Paunović
    • 2
  • Zoran Gačić
    • 3
  1. 1.Faculty of Biology, Chair of Microbiology, Centar for Genotoxicology and EcogenotoxicologyUniversity of BelgradeBelgradeSerbia
  2. 2.Institute for Biological Research Siniša StankovićUniversity of BelgradeBelgradeSerbia
  3. 3.Institute for Multidisciplinary ResearchUniversity of BelgradeBelgradeSerbia

Personalised recommendations