Hydrobiologia

, Volume 713, Issue 1, pp 87–95 | Cite as

Exploring the legacy effects of surface coal mining on stream chemistry

  • Robert L. HopkinsII
  • Bradley M. Altier
  • Derek Haselman
  • Andrea D. Merry
  • Jacob J. White
Primary Research Paper

Abstract

Surface coal mining results in dramatic alterations of the landscape in central Appalachia, leading to a myriad of environmental problems. In this study, we explore the long-term effects of surface coal mining on stream chemistry and endeavor to gain a better understanding of the efficacy of reclamation. We examined 30 sites in the Raccoon Creek watershed in southeastern Ohio, where the majority of surface mine sites are in various stages of reclamation. Our results show that conductivity (r = 0.862; P = 0.000), sulfate (r = 0.619; P = 0.000), and aluminum (r = 0.469; P = 0.009) levels increase linearly as a function of the areal extent of reclaimed mines in each subwatershed, suggesting limited success of reclamation to restore natural stream chemistry. In contrast, pH was not significantly linearly correlated with the areal extent of surface mines. This suggests that local acid mine drainage remediation projects are able to regulate acidity levels in the watershed but not conductivity and certain heavy metal concentrations. Many sites had conductivity levels high enough to impair aquatic biota via ionic and osmoregulatory stress. In sum, surface coal mining appears to have a strong legacy effect on stream chemistry in the Raccoon Creek watershed.

Keywords

Water quality Appalachia Reclamation Stream ecosystems Surface coal mining 

References

  1. Agouridis, C. T., P. N. Angel, T. J. Taylor, C. D. Barton, R. C. Warner, X. Yu & C. D. Wood, 2012. Water quality characteristics of discharge from reforested loose-dumped mine spoil in eastern Kentucky. Journal of Environmental Quality 41: 454–468.PubMedCrossRefGoogle Scholar
  2. APHA, AWA & WEF, 2005. Standard Methods for the Examination of Water and Wastewater, 21st edn. American Public Health Association, Washington, DC.Google Scholar
  3. ASTM Standard D516, 2002. Standard Test Method for Sulfate Ion in Water. ASTM International, West Conshohocken, PA. doi:10.1520/D0516-02.
  4. ASTM Standard D3559, 2008. Standard Test Method for Lead in Water. ASTM International, West Conshohocken, PA. doi:10.1520/D3559-08.
  5. Baker, J. P. & C. L. Schofield, 1982. Aluminum toxicity to fish in acidic water. Soil, Water, & Air Pollution 18: 289–309.CrossRefGoogle Scholar
  6. Bernhardt, E. S. & M. A. Palmer, 2011. The environmental costs of mountaintop mining valley fill operations for aquatic ecosystems of the Central Appalachians. Annals of the New York Academy of Sciences 1223: 39–57.PubMedCrossRefGoogle Scholar
  7. Bernhardt, E. S., B. Lutz, R. S. King, J. P. Fay, C. E. Carter, A. M. Helton, D. Campagna & J. Amos, 2012. Environmental Science and Technology 46: 8112–8115.CrossRefGoogle Scholar
  8. Carroll, C., L. Merton & P. Burger, 2000. Impact of vegetative cover and slope on runoff, erosion, and water quality for field plots on a range of soil and spoil materials on central Queensland coal mines. Australian Journal of Soil Resources 38: 313–327.CrossRefGoogle Scholar
  9. Cormier, S. M., S. P. Wilkes & L. Zheng, 2013. Relationship of land use and elevated ionic strength in Appalachian watersheds. Environmental Toxicology and Chemistry 32: 296–303.PubMedCrossRefGoogle Scholar
  10. Dodds, W. & M. Whiles, 2010. Freshwater Ecology: Concepts and Environmental Applications of Limnology, 2nd edn. Academic Press, Burlington.Google Scholar
  11. Ferrari, J. R., T. R. Lookingbill, B. McCormick, P. A. Townsend & K. N. Eshleman, 2009. Surface mining and reclamation effects on flood response of watersheds in the central Appalachian Plateau region. Water Resources Research 45: W04407.CrossRefGoogle Scholar
  12. Griffith, M. B., S. B. Norton, L. C. Alexander, A. I. Pollard & S. D. LeDuc, 2012. The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: a review. Science of the Total Environment 417: 1–12.PubMedCrossRefGoogle Scholar
  13. Hendryx, M. & M. Ahem, 2008. Relations between health indicators and residential proximity to coal mining in West Virginia. American Journal of Public Health 98: 669–671.PubMedCrossRefGoogle Scholar
  14. Holl, K. D., 2002. Long-term vegetation recovery on reclaimed coal surface mines in the eastern USA. Journal of Applied Ecology 39: 960–970.CrossRefGoogle Scholar
  15. Johnson, D. B. & K. B. Hallberg, 2005. Acid mine drainage remediation options: a review. Science of the Total Environment 338: 3–14.PubMedCrossRefGoogle Scholar
  16. Johnson, B. R., A. Haas & K. M. Fritz, 2010. Use of spatially explicit physiochemical data to measure downstream impacts of headwater stream disturbance. Water Resources Research 46: W09526.CrossRefGoogle Scholar
  17. Lindberg, T. T., E. S. Bernhardt, R. Bier, A. M. Helton, R. B. Merola, A. Vengosh & R. R. Di Giulio, 2011. Cumulative impacts of mountaintop mining on an Appalachian watershed. Proceedings of the National Academy of Sciences 108: 20929–20934.CrossRefGoogle Scholar
  18. Maassen, S., D. Balla, T. Kalettka & O. Gabriel, 2012. Screening of prevailing processes that drive surface water quality of running waters in a cultivated wetland region of Germany – a multivariate approach. Science of the Total Environment 438: 154–165.PubMedCrossRefGoogle Scholar
  19. Merricks, T. C., D. S. Cherry, C. E. Zipper, R. J. Currie & T. W. Valenti, 2007. Coal mine hollow fill and settling pond influences on headwater streams in southern West Virginia, USA. Environmental Monitoring and Assessment 129: 359–378.PubMedCrossRefGoogle Scholar
  20. Negley, T. L. & K. N. Eshleman, 2006. Comparison of stormflow responses of surface-mined and forested watersheds in the Appalachian Mountains, USA. Hydrological Process 20: 3467–3483.CrossRefGoogle Scholar
  21. Nordstrom, D. K. & J. W. Ball, 1986. The geochemical behavior of aluminum in acidified surface waters. Science 232: 54–56.PubMedCrossRefGoogle Scholar
  22. Northington, R. M., E. F. Benfield, S. H. Schoenholtz, A. J. Timpano, J. R. Webster & C. Zipper, 2011. As assessment of structural attributes and ecosystem function in restored Virginia coalfield streams. Hydrobiologia 671: 51–63.CrossRefGoogle Scholar
  23. OEPA, 1996. Biological and water quality study of the Raccoon Creek Basin. OEPA Technical Report Number MAS/1996-12-7.Google Scholar
  24. OGS, 2008. Environmental Leaflet No. 8: coal. http://www.dnr.state.oh.us/Portals/10/pdf/EL/el08.pdf.
  25. Palmer, M. A., E. S. Bernhardt, W. H. Schlesinger, K. N. Eshelman, E. Foufoula-Gergiou, M. S. Henrdryx, A. D. Lemly, G. E. Likens, O. L. Loucks, M. E. Power, P. S. White & P. R. Wilcock, 2010. Mountain top mining consequences. Science 327: 148–149.PubMedCrossRefGoogle Scholar
  26. Petty, J. T., J. B. Fulton, M. P. Strager, G. T. Merovich Jr., J. M. Stiles & P. F. Ziemkiewicz, 2010. Landscape indicators and thresholds of stream ecological impairment in an intensively mined Appalachian watershed. Journal of the North American Benthological Society 29: 1292–1309.CrossRefGoogle Scholar
  27. Pond, G. J., 2010. Patterns of Ephemeropta taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia 641: 185–201.CrossRefGoogle Scholar
  28. Pond, G. J., M. E. Passmore, F. A. Borsuk, L. Reynolds & C. J. Rose, 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. Journal of the North American Benthological Society 27: 717–737.CrossRefGoogle Scholar
  29. Reynolds, B. & K. J. Reddy, 2012. Infiltration rates in reclaimed surface coal mines. Water, Air, and Soil Pollution 223: 5941–5958.CrossRefGoogle Scholar
  30. Singleton, H., 2000. Ambient water quality guidelines for sulphate. Ministry of Environment, Lands and Parks, Province of British Columbia, Canada. http://www.env.gov.bc.ca/wat/wq/BCguidelines/sulphate/sulphate.html.
  31. USEPA, 2011. The Effects of Mountaintop Mines and Valley Fills on Aquatic Ecosystems of the Central Appalachian Coalfields. Office of Research and Development, National Center for Environmental Assessment, Washington, DC. EPA/600/R-09/138F.Google Scholar
  32. Wood, S. C., P. L. Younger & N. S. Robins, 1999. Long-term changes in the water quality of polluted minewater discharges from abandoned underground coal workings in Scotland. Quarterly Journal of Engineering Geology 32: 69–79.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Robert L. HopkinsII
    • 1
  • Bradley M. Altier
    • 2
  • Derek Haselman
    • 1
  • Andrea D. Merry
    • 2
  • Jacob J. White
    • 2
  1. 1.Biology DepartmentUniversity of Rio GrandeRio GrandeUSA
  2. 2.Chemistry DepartmentUniversity of Rio GrandeRio GrandeUSA

Personalised recommendations