Hydrobiologia

, Volume 713, Issue 1, pp 53–71 | Cite as

Application of a numerical model to predict impacts of climate change on water temperatures in two deep, oligotrophic lakes in New Zealand

  • Tina K. Bayer
  • Carolyn W. Burns
  • Marc Schallenberg
Primary Research Paper

Abstract

We applied a numerical hydrodynamic model (DYRESM) to two large, deep New Zealand lakes that are characterised by deep thermoclines and high wind forcing, to assess their sensitivity to changes in climate. Modifications to standard model parameters were necessary for the successful application of DYRESM. Predictions from downscaled global circulation models suggest an increase in mean air temperature, rainfall, and wind speeds. Modelling the hydrodynamics of the lakes suggests that increasing air temperatures would offset the cooling influences of increased rainfall and river flows, resulting in warmer overall lake temperatures, and an earlier, longer, and shallower thermal stratification. These physical changes could affect phytoplankton production as their light limitation would decrease in duration and intensity. However, deeper mixing caused by increases in wind speed would negate this reduction of thermocline depth. While warmer air temperatures appear to be the dominant driver of changes in thermal structure, changes in other meteorological factors, especially wind speed, are important in predicting future hydrodynamics. Compared to large, deep lakes in the Northern Hemisphere, the predicted warming rates in Lakes Wanaka and Wakatipu are slower, due partly to a lower predicted rate of atmospheric warming and the absence of winter ice cover in these lakes.

Keywords

Lake modelling Climate change DYRESM Lake Wanaka Lake Wakatipu New Zealand Thermocline Thermal structure Phytoplankton 

Supplementary material

10750_2013_1492_MOESM1_ESM.doc (42 kb)
Supplementary material 1 (DOC 43 kb)

References

  1. Austin, J. A. & S. M. Colman, 2007. Lake Superior summer water temperatures are increasing more rapidly than regional air temperatures: a positive ice-albedo feedback. Geophysical Research Letters 34: L06604.CrossRefGoogle Scholar
  2. Austin, J. A. & S. M. Colman, 2008. A century of temperature variability in Lake Superior. Limnology and Oceanography 53: 2724–2730.CrossRefGoogle Scholar
  3. Baigun, C. & M. Marinon, 1995. Cold-temperate lakes of South America: do they fit northern hemisphere models? Archiv für Hydrobiologie 135: 23–51.Google Scholar
  4. Beniston, M., M. Rebetez, F. Giorgi & M. R. Marinucci, 1994. An analysis of regional climate change in Switzerland. Theoretical and Applied Climatology 49: 135–159.CrossRefGoogle Scholar
  5. Berger, S. A., S. Diehl, H. Stibor, G. Trommer, M. Ruhenstroth, A. Wild, J. Weigert, C. G. Jager & M. Striebel, 2007. Water temperature and mixing depth affect timing and magnitude of events during spring succession of the plankton. Oecologia 150: 643–654.PubMedCrossRefGoogle Scholar
  6. Beven, K., 2006. On undermining the science? Hydrological Processes 20: 3141–3146.CrossRefGoogle Scholar
  7. Blenckner, T., A. Elliott, H. Markensten, C. Pers & S. Thackeray, 2010. Modeling the effects of climate change on the seasonal dynamics of phytoplankton. In George, G. (ed.), The impact of climate change on European lakes. Springer Netherlands: 275–292.Google Scholar
  8. Boyce, F. M., P. F. Hamblin, L. D. D. Harvey, W. M. Schertzer & R. C. McCrimmon, 1993. Response of the thermal structure of Lake Ontario to deep cooling water withdrawals and to global warming. Journal of Great Lakes Research 19: 603–616.CrossRefGoogle Scholar
  9. Centre for Water Research, 1997a. User reference manual for DYRESM-WQ 1.4 and DYRESM-WQ Matlab interface. Centre for Water Research, University of Western Australia.Google Scholar
  10. Centre for Water Research, 1997b. User science manual for DYRESM-WQ 1.4. Centre for Water Research, University of Western Australia.Google Scholar
  11. Coats, R., J. Perez-Losada, G. Schladow, R. Richards & C. Goldman, 2006. The warming of Lake Tahoe. Climatic Change 76: 121–148.CrossRefGoogle Scholar
  12. Davies-Colley, R. J., 1988. Mixing depths in New Zealand lakes. New Zealand Journal of Marine and Freshwater Research 22: 517–527.CrossRefGoogle Scholar
  13. De Stasio, B. T., D. K. Hill, J. M. Kleinhans, N. P. Nibbelink & J. J. Magnuson, 1996. Potential effects of global climate change on small north-temperate lakes: physics, fish, and plankton. Limnology and Oceanography 41: 1136–1149.CrossRefGoogle Scholar
  14. Dokulil, M. T., A. Jagsch, G. D. George, O. Anneville, T. Jankowski, B. Wahl, B. Lenhart, T. Blenckner & K. Teubner, 2006. Twenty years of spatially coherent deepwater warming in lakes across Europe related to the North Atlantic Oscillation. Limnology and Oceanography 51: 2787–2793.CrossRefGoogle Scholar
  15. Dokulil, M.T., K. Teubner, A. Jagsch, U. Nickus, R. Adrian, D. Straile, T. Jankowski, A. Herzig & J. Padisak, 2010. The impact of climate change on lakes in Central Europe. In George, G. (ed.), The impact of climate change on European lakes. Springer, Dordrecht: 387–409.Google Scholar
  16. Fitzharris, B., 2004a. Possible impact of future climate change on seasonal snow of the Southern Alps of New Zealand. In Kearsley, G. & B. Fitzharris (eds), Glimpses of a Gaian world: Essays in Honour of Peter Holland, Department of Geography. School of Social Science, University of Otago, Dunedin: 231–241.Google Scholar
  17. Fitzharris, B., 2004b. Snow accounts for New Zealand. Report prepared for NIWA, Ministry for the Environment, and Statistics New Zealand by Climate Management Centre, Department of Geography, University of Otago, Dunedin.Google Scholar
  18. Fitzharris, B., 2007. How vulnerable is the Southern Lakes region to the impacts of global warming? Annual conference of the New Zealand Freshwater Sciences Society. Department of Geography, University of Otago, Queenstown.Google Scholar
  19. Gal, G., J. Imberger, T. Zohary, J. Antenucci, A. Anis & T. Rosenberg, 2003. Simulating the thermal dynamics of Lake Kinneret. Ecological Modelling 162: 69–86.CrossRefGoogle Scholar
  20. Green, J. D., A. B. Viner & D. J. Lowe, 1987. The effect of climate on lake mixing patterns and temperatures. In Viner, A. B. (ed.), Inland waters of New Zealand. Science Information Publishing Centre, Wellington: 65–96.Google Scholar
  21. Hamill, K., 2006. Snapshot of lake water quality in New Zealand. Ministry for the Environment, Wellington.Google Scholar
  22. Hamilton, D. P., K. R. O’Brien, M. A. Burford, J. D. Brookes & C. G. McBride, 2010. Vertical distributions of chlorophyll in deep, warm monomictic lakes. Aquatic Sciences 72: 295–307.CrossRefGoogle Scholar
  23. Hamilton, D.P., C.G. McBride, D. Özkundakci, M. Schallenberg, P. Verburg, M. de Winton, D. Kelly, C. Hendy & W. Ye, 2013. Effects of climate change on New Zealand Lakes. In Goldman, C.R., Kumagai, M. & Robarts, R.D. (eds) Climate Change and Inland Waters: Impacts and Mitigation for Ecosystems and Societies. Wiley, New York: 337–366.Google Scholar
  24. Hampton, S., L. Izemeteva, M. Moorez, S. Katz, B. Dennis & E. Silow, 2008. Sixty years of environmental change in the world’s largest freshwater lake—Lake Baikal, Siberia. Global Change Biology 14: 1–12.CrossRefGoogle Scholar
  25. Henderson-Sellers, B., 1988. Sensitivity of thermal stratification models to changing boundary conditions. Applied Mathematical Modelling 12: 31–43.CrossRefGoogle Scholar
  26. Hendrikx, J., M. Clark, E.O. Hreinsson, A. Tait, R. Woods, A. Slater & B. Mullan, 2009. Simulations of seasonal snow in New Zealand: past and future. In Proceedings of the 9th International Conference on Southern Hemisphere Meteorology and Oceanography, Melbourne, February 2009, American Meteorological Society. [http://www.bom.gov.au/events/9icshmo/manuscripts/M1715_Hendrikx.pdf].
  27. Hondzo, M. & H. G. Stefan, 1991. Three case studies of lake temperature and stratification response to warmer climate. Water Resources Research 27: 1837–1846.CrossRefGoogle Scholar
  28. Hondzo, M. & H. G. Stefan, 1993. Regional water temperature characteristics of lakes subjected to climate change. Climatic Change 24: 187–211.CrossRefGoogle Scholar
  29. Hornung, R., 2002. Numerical modelling of stratification in Lake Constance with the 1-D hydrodynamic model DYRESM. Master thesis. Universität Stuttgart, Stuttgart.Google Scholar
  30. Imberger, J. C. & J. Patterson, 1981. A Dynamic Reservoir Simulation Model—DYRESM. In Fischer, H. B. (ed.), Transport models for inland and coastal waters. Academic Press, New York: 310–361.Google Scholar
  31. Irwin, A. J., 1972. Lake Wakatipu. Department of Scientific and Industrial Research, Bathymetry.Google Scholar
  32. Irwin, A. J., 1976. Lake Wanaka. Bathymetry: Department of Scientific and Industrial Research, Wellington.Google Scholar
  33. Jones, I., J. Sahlberg & I. Persson, 2010. Modelling the impact of climate change on the thermal characteristics of lakes. In George, G. (ed), The impact of climate change on European lakes. Springer, Dordrecht: 103–120.Google Scholar
  34. Jones, I. D., T. Page, J. A. Elliott, S. J. Thackeray & A. L. Heathwaite, 2011. Increases in lake phytoplankton biomass caused by future climate-driven changes to seasonal river flow. Global Change Biology 17: 1809–1820.CrossRefGoogle Scholar
  35. Komatsu, E., T. Fukushima & H. Harasawa, 2007. A modeling approach to forecast the effect of long-term climate change on lake water quality. Ecological Modelling 209: 351–366.CrossRefGoogle Scholar
  36. Koutsoyiannis, D., A. Efstratiadis, N. Mamassis & A. Christofides, 2008. On the credibility of climate predictions. Hydrological Sciences 53: 671–684.CrossRefGoogle Scholar
  37. Lazzarotto, J., F. Rapin & C. Corvi, 2004. Physical–chemical changes and tests for metals and various micropollutants in the waters of Lake Geneva. Rapports. Commission Internationale pour la Protection des Eaux du Leman contre la Pollution: 31–58.Google Scholar
  38. Lehman, J. T., 2002. Mixing patterns and plankton biomass of the St. Lawrence Great Lakes under climate change scenarios. Journal of Great Lakes Research 28: 583–596.CrossRefGoogle Scholar
  39. Livingstone, D. M., 2003. Impact of secular climate change on the thermal structure of a large temperate Central European Lake. Climatic Change 57: 205–225.CrossRefGoogle Scholar
  40. Livingstone, M. E., B. J. Biggs & J. S. Gifford, 1986. Inventory of New Zealand lakes. Water and soil miscellaneous publication: 80, 81.Google Scholar
  41. McGowan, H. A., A. P. Sturman & I. F. Owens, 1996. Aeolian dust transport and deposition by foehn winds in an alpine environment, Lake Tekapo, New Zealand. Geomorphology 15: 135–146.CrossRefGoogle Scholar
  42. McKerchar, A. I. & R. D. Henderson, 2003. Shifts in flood and low-flow regimes in New Zealand due to inter-decadal climate variations. Hydrological Sciences 48: 637–654.CrossRefGoogle Scholar
  43. McKerchar, A. I., C. P. Pearson & M. E. Moss, 1996. Prediction of summer inflows to lakes in the Southern Alps, New Zealand, using the spring Southern Oscillation Index. Journal of Hydrology 184: 175–187.CrossRefGoogle Scholar
  44. Ministry for the Environment, 2008. Climate change effects and impacts assessment: a guidance manual for local government in New Zealand. In Mullan, B., D. Wratt, S. Dean, M. Hollis, S. Allan, T. Williams, G. Kenny & MfE (eds), Ministry for the Environment, Wellington.Google Scholar
  45. Özkundakci, D., D. P. Hamilton & D. Trolle, 2011. Modelling the response of a highly eutrophic lake to reductions in external and internal nutrient loading. New Zealand Journal of Marine and Freshwater Research 45: 165–185.CrossRefGoogle Scholar
  46. Peeters, F., D. Livingstone, G.-H. Goudsmit, R. Kipfer & R. Forster, 2002. Modeling 50 years of historical temperature profiles in a large central European lake. Limnology and Oceanography 47: 186–197.CrossRefGoogle Scholar
  47. Peeters, F., D. Straile, A. Lorke & D. M. Livingstone, 2007. Earlier onset of the spring phytoplankton bloom in lakes of the temperate zone in a warmer climate. Global Change Biology 13: 1898–1909.CrossRefGoogle Scholar
  48. Perroud, M. & S. Goyette, 2010. Impacts of warmer climate on Lake Geneva water temperature profiles. Boreal Environment Research 15: 255–278.Google Scholar
  49. Perroud, M., S. Goyette, A. Matrynov, M. Beniston & O. Anneville, 2009. Simulation of multiannual thermal profiles in deep Lake Geneva: a comparison of one-dimensional lake models. Limnology and Oceanography 54: 1574–1594.CrossRefGoogle Scholar
  50. Pickrill, R. & J. Irwin, 1982. Predominant headwater inflow and its control of lake-river interactions in Lake Wakatipu. New Zealand Journal of Marine and Freshwater Research 16: 201–213.CrossRefGoogle Scholar
  51. Renwick, J., P. Mladenov, J. Purdie, A. McKerchar & D. Jamieson, 2010. The effects of climate variability and change upon renewable electricity in New Zealand. In Nottage, R. A. C., D. S. Wratt, J. F. Bornman & K. Jones (eds), Climate change adaptation in New Zealand: future scenarios and some sectoral perspectives. New Zealand Climate Change Centre, Wellington: 70–81.Google Scholar
  52. Rinke, K., P. Yeates & K.-O. Rothhaupt, 2010. A simulation study of the feedback of phytoplankton on thermal structure via light extinction. Freshwater Biology 55: 1674–1693.Google Scholar
  53. Robertson, D. M. & J. Imberger, 1994. Lake Number, a quantitative indicator of mixing used to estimate changes in dissolved oxygen. Internationale Revue der gesamten Hydrobiologie und Hydrographie 79: 159–176.CrossRefGoogle Scholar
  54. Robertson, D. M. & R. A. Ragotzkie, 1990. Changes in the thermal structure of moderate to large sized lakes in response to changes in air temperature. Aquatic Sciences 52: 360–380.CrossRefGoogle Scholar
  55. Rogora, M., A. Marchetto & R. Mosello, 2003. Modelling the effects of atmospheric sulphur and nitrogen deposition on selected lakes and streams of the Central Alps (Italy). Hydrology and Earth System Sciences 7: 540–551.CrossRefGoogle Scholar
  56. Sahoo, G., S. Schladow, J. Reuter & R. Coats, 2011. Effects of climate change on thermal properties of lakes and reservoirs, and possible implications. Stochastic Environmental Research and Risk Assessment 25: 445–456.CrossRefGoogle Scholar
  57. Schallenberg, M. & C. W. Burns, 2001. Tests of autotrophic picoplankton as early indicators of nutrient enrichment in an ultra-oligotrophic lake. Freshwater Biology 46: 27–37.CrossRefGoogle Scholar
  58. Schallenberg, M., M. James, I. Hawes & C. Howard-Williams, 1999. External forcing by wind and turbid inflows on a deep glacial lake and implications for primary production. New Zealand Journal of Marine and Freshwater Research 33: 311–331.CrossRefGoogle Scholar
  59. Scherrer, S. C., C. Appenzeller & M. Liniger, 2006. Temperature trends in Switzerland and Europe: implications for climate normals. International Journal of Climatology 26: 565–580.CrossRefGoogle Scholar
  60. Schneider, P. & S. J. Hook, 2010. Space observations of inland water bodies show rapid surface warming since 1985. Geophysical Research Letters 37: L22405.CrossRefGoogle Scholar
  61. Schneider, P., S. J. Hook, R. G. Radocinski, G. K. Corlett, G. C. Hulley, S. G. Schladow & T. E. Steissberg, 2009. Satellite observations indicate rapid warming trend for lakes in California and Nevada. Geophysical Research Letters 36: L22402.CrossRefGoogle Scholar
  62. Sousounis, P. J. & E. K. Grover, 2002. Potential future weather patterns over the Great Lakes Region. Journal of Great Lakes Research 28: 496–520.CrossRefGoogle Scholar
  63. Spigel, R., C. Howard-Williams, M. James & M. M. Gibbs, 2001. A coupled hydrodynamic ecosystem study of Lake Taupo: A preliminary model. NIWA Client Report CHC01/52. National Institute of Water and Atmospheric Research, Christchurch.Google Scholar
  64. Spigel, R. & A. McKerchar, 2008. Lake Brunner study: modelling thermal stratification. NIWA Client Report: CHC2008-080. National Institute of Water and Atmospheric Research, Christchurch.Google Scholar
  65. Stefan, H. G., X. Fang & M. Hondzo, 1998. Simulated climate change effects on year-round water temperatures in temperate zone lakes. Climatic Change 40: 547–576.CrossRefGoogle Scholar
  66. Tanentzap, A. J., D. P. Hamilton & N. D. Yan, 2007. Calibrating the Dynamic Reservoir Simulation Model (DYRESM) and filling required data gaps for one-dimensional thermal profile predictions in a boreal lake. Limnology and Oceanography: Methods 5: 484–494.CrossRefGoogle Scholar
  67. Tanentzap, A. J., N. D. Yan, W. Keller, R. Girard, J. Heneberry, J. M. Gunn, D. P. Hamilton & P. A. Taylor, 2008. Cooling lakes while the world warms: effects of forest re-growth and increased dissolved organic matter on the thermal regime of a temperate, urban lake. Limnology and Oceanography 53: 404–410.CrossRefGoogle Scholar
  68. Tirok, K. & U. Gaedke, 2007. The effect of irradiance, vertical mixing and temperature on spring phytoplankton dynamics under climate change: long-term observations and model analysis. Oecologia 150: 625–642.PubMedCrossRefGoogle Scholar
  69. Trolle, D., D. P. Hamilton, C. A. Pilditch, I. C. Duggan & E. Jeppesen, 2011. Predicting the effects of climate change on trophic status of three morphologically varying lakes: Implications for lake restoration and management. Environmental Modelling & Software 26: 354–370.CrossRefGoogle Scholar
  70. Verburg, P., R. Hecky & H. Kling, 2003. Ecological consequences of a century of warming in Lake Tanganyika. Science 301: 505–507.PubMedCrossRefGoogle Scholar
  71. Weinberger, S. & M. Vetter, 2012. Using the hydrodynamic model DYRESM based on results of a regional climate model to estimate water temperature changes at Lake Ammersee. Ecological Modelling 244: 38–48.CrossRefGoogle Scholar
  72. Winder, M. & D. Hunter, 2008. Temporal organization of phytoplankton communities linked to physical forcing. Oecologia 156: 179–192.PubMedCrossRefGoogle Scholar
  73. Winder, M. & D. E. Schindler, 2004. Climatic effects on the phenology of lake processes. Global Change Biology 10: 1844–1856.CrossRefGoogle Scholar
  74. Woods, R. A. & C. Howard-Williams, 2004. Advances in freshwater sciences and management. In Harding, J. S., M. P. Mosley, C. P. Pearson & B. K. Sorrell (eds), Freshwaters of New Zealand. New Zealand Hydrological Society and New Zealand Limnological Society. Caxton Press, Christchurch.Google Scholar
  75. Yeates, P. & J. Imberger, 2003. Pseudo two-dimensional simulations of internal and boundary fluxes in stratified lakes and reservoirs. International Journal of River Basin Management 1: 279–319.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Tina K. Bayer
    • 1
  • Carolyn W. Burns
    • 1
  • Marc Schallenberg
    • 1
  1. 1.Department of ZoologyUniversity of OtagoDunedinNew Zealand

Personalised recommendations