, Volume 715, Issue 1, pp 181–193 | Cite as

Cladocera and geochemical evidence from sediment cores show trophic changes in Polish dystrophic lakes

  • Izabela ZawiskaEmail author
  • Edyta Zawisza
  • Michał Woszczyk
  • Krystyna Szeroczyńska
  • Waldemar Spychalski
  • Alexander Correa-Metrio


Change in the trophic state of lakes is a topic of primary interest for limnologists and paleolimnologists, but also for governments in many countries. These changes can be the result of the natural evolution of lake ecosystems, but nowadays are most often connected with human activity influencing water bodies. In this article, we reconstruct changes in the lake productivity and trophic state in three dystrophic (humic) lakes located in Northern Poland. Sediments from these lakes, which are part of a national park, were submitted to Cladocera and chemical composition analyses. Currently, the trophic state of these lakes has been described based on the water's chemical composition, and they have been classified as undisturbed ecosystems with a stable trophic state. The main objective of this study was to evaluate whether these lakes have been stable and undisturbed ecosystems during the past centuries and therefore whether they can be classified as natural and pristine. The results of subfossil Cladocera analysis and sedimentary geochemical analysis confirmed the specific nature of studied lakes. However, our results were surprising and showed that during the last 200 years two of the three lakes have undergone distinct trophic changes, while one of them has barely changed at all.


Dystrophic lakes Cladocera Eutrophication Geochemical analysis Wigierski National Park 



This study was founded by the Polish Ministry of Science (Grant no. N306 228039). This research was possible only with the support of the Institute of Geography and Spatial Organization and Institute of Geological Sciences, Polish Academy of Sciences, and employees of Wigierski National Park, especially Lech Krzysztofiak.

Supplementary material

10750_2013_1482_MOESM1_ESM.tif (26.1 mb)
Changes in total 210Pb activity, and the age-depth model of the sediments of Lake Suchar Wielki (TIFF 26688 kb)
10750_2013_1482_MOESM2_ESM.tif (27.7 mb)
Changes in total 210Pb activity, and age-depth model of the sediments of Lake Suchar III (TIFF 28336 kb)
10750_2013_1482_MOESM3_ESM.tif (29.3 mb)
Changes in total 210Pb of the sediments of Lake Suchar IV (TIFF 30014 kb)


  1. Alhonen, P., 1972. Gallträsket: the geological development and palaeolimnology of a small, polluted lake in Southern Finland. Commentationes Biologicae 57: 1–34.Google Scholar
  2. Alhonen, P., 1985. Lake restoration: a sediment limnological approach. Aqua Fennica 15: 269–273.Google Scholar
  3. Appleby, P. G., 2001. Chronostratigraphic techniques in recent sediments. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments. Volume 1: Basin Analysis, Coring, and Chronological Techniques. Kluwer Academic Publishers, Dordrecht: 171–203.Google Scholar
  4. Birks, H. H., M. C. Whiteside, D. M. Stark & R. C. Bright, 1976. Recent paleolimnology of three lakes in northwestern Minnesota. Quaternary Research 6: 249–272.CrossRefGoogle Scholar
  5. Bjerring, R., E. Becares, S. Declerck, E. M. Gross, L.-A. Hansson, T. Kairesalo, M. Nykänen, A. Halkiewicz, R. Kornijów, J. M. Conde-Porcuna, M. Sereflis, T. Nõges, B. Moss, S. L. Amsinck, B. V. Odgaard & E. Jeppesen, 2009. Subfossil Cladocera in relation to contemporary environmental variables in 54 Pan-European lakes. Freshwater Biology 54: 2401–2417.CrossRefGoogle Scholar
  6. Boyle, J. F., 2001. Inorganic geochemical methods in palaeolimnology. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments. Volume 2: Physical and Geochemical Methods. Kluwer Academic Publishers, Dordrecht: 83–141.Google Scholar
  7. Boucherle, M. M. & H. Züllig, 1983. Cladoceran remains as evidence of change in trophic state in three Swiss lakes. Hydrobiologia 103: 141–146.CrossRefGoogle Scholar
  8. Chen, G., C. Dalton & D. Taylor, 2010. Cladocera as indicators of trophic state in Irish lakes. Journal of Paleolimnology 44: 465–481.CrossRefGoogle Scholar
  9. Council Directive 92/43/EEC of 21 May 1992 on the conservation of natural habitats and of wild fauna and flora.Google Scholar
  10. Cundy, A. B. & I. W. Croudace, 1995. Sedimentary and geochemical variations in a salt marsh/mud flat environment from the mesotidal Hamble estuary, southern England. Marine Chemistry 51: 115–132.CrossRefGoogle Scholar
  11. Davidson, T. A., H. Bennion, E. Jeppesen, G. H. Clarke, C. D. Sayer, D. Morley, B. V. Odgaard, P. Rasmussen, R. Rawcliffe, J. Salgado, G. L. Simpson & S. L. Amsinck, 2011. The role of cladocerans in tracking long-term change in shallow lake trophic status. Hydrobiologia 676: 299–315.CrossRefGoogle Scholar
  12. Eusterhues, K., H. Heinrichs & J. D. Schneider, 2005. Geochemical response on redox fluctuations in Holocene lake sediments, Lake Steisslingen, Southern Germany. Chemical Geology 222: 1–22.CrossRefGoogle Scholar
  13. Flössner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden.Google Scholar
  14. Flynn, W. W., 1968. The determination of low-levels of polonium-210 in environmental materials. Analytica Chimica Acta 43(1): 221–227.PubMedCrossRefGoogle Scholar
  15. Fryer, G., 1968. Evolution and adaptive radiation in the chydoridae (Crustacea: cladocera): a study in comparative functional morphology and ecology. Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 254: 221–382.CrossRefGoogle Scholar
  16. Frey, D. G., 1986. Cladocera analysis. In Berglund, B. E. (ed.), Handbook of Holocene Palaeoecology and Palaeohydrology. Wiley, Chichester: 667–692.Google Scholar
  17. Fryer, G., 1991. Functional morphology and the adaptive radiation of the Daphniidae (Branchiopoda Anomopoda). Philosophical Transactions of the Royal Society of London Series B, Biological Sciences 331: 1–99.CrossRefGoogle Scholar
  18. Gauch, H. G. Jr., 1982. Multivariate Analysis in Community Structure. Cambrigde University Press, Cambridge.CrossRefGoogle Scholar
  19. Górniak, A., 1996. Substancje humusowe i ich rola w funkcjonowaniu ekosystemów słodkowodnych. Dissertationes Universitatis Varsoviensis, Białystok.Google Scholar
  20. Górniak, A., 2004. Zaawansowanie dystrofii sucharów Wigierskiego Parku Narodowego. Rocznik Augustowsko-Suwalski 4: 45–52.Google Scholar
  21. Górniak A., 2006. Jeziora Wigierskiego Parku Narodowego. Aktualna jakość i trofia wód. Wydawnictwo Uniwersytetu w Białymstoku, BiałystokGoogle Scholar
  22. Górniak A. & P. Dobrzyń, 1999. Zooplankton skorupiakowy trzech jezior dystroficznych Wigierskiego Parku Narodowego. In Zdanowski, B. (ed.), Funkcjonowanie i ochrona ekosystemów wodnych na obszarach chronionych: 435–447.Google Scholar
  23. Górniak, A., M. E. Grabowska, P. Jekatierynczuk-Rudczyk, Zieliński & T. Suchowolec, 2003. Long-term variations of phytoplankton primary production in a shallow, polyhumic reservoir. Hydrobiologia 506–509: 305–310.CrossRefGoogle Scholar
  24. Grimm, E., 1987. CONISS: a Fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Computers and Geosciences 13: 13–35.CrossRefGoogle Scholar
  25. Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.CrossRefGoogle Scholar
  26. Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Plant Ecology 42: 47–58.CrossRefGoogle Scholar
  27. Hofmann, W., 1996. Empirical relationships between cladoceran fauna and trophic state in thirteen northern German lakes: analysis of surficial sediments. Hydrobiologia 318: 195–201.CrossRefGoogle Scholar
  28. Holopainen, A.-L., R. Niinioja & A. Rämö, 2003. Seasonal succession, vertical distribution and long term variation of phytoplankton communities in two shallow forest lakes in eastern Finland. Hydrobiologia 506–509: 237–245.CrossRefGoogle Scholar
  29. Jones, R. I., 1992. The influence of humic substances on lacustrine planktonic food chains. Hydrobiologia 229: 73–91.CrossRefGoogle Scholar
  30. Juggins, S., 2005. New features in C2 version 1.4. University of Newcastle, Newcastle.Google Scholar
  31. Juggins, S., 2007. User guide C2 Software for ecological and palaeoecological data analysis and visualization user guide version 1.5. University of Newcastle, Newcastle.Google Scholar
  32. Karabin A., 1999. Zespoły Crustacea strefy przybrzeżnej humusowych jezior Wigierskiego Parku Narodowego. In Zdanowski, B., et al. (eds), Funkcjonowanie i ochrona ekosystemów wodnych na obszarach chronionych: 405–415.Google Scholar
  33. Keskitalo, J. & P. Eloranta, 1999. Limnology of Humic Waters. Backhuys Publishers, Leiden.Google Scholar
  34. Korhola, A., 1990. Paleolimnology and hydroseral development of the Kotasuo Bog, Southern Finland, with special reference to the Cladocera. Annales Academiæ Scientiarum Fennicæ. Series A. III 155: 1–40.Google Scholar
  35. Lepisto, L. & U. Rosenström, 1998. The most typical phytoplankton taxa in four types of Boral lakes. Hydrobiologia 369–370: 89–97.CrossRefGoogle Scholar
  36. Meyers, P. A. & J. L. Teranes, 2001. Sediment organic matter. In Last, W. M. & J. P. Smol (eds), Tracking Environmental Change Using Lake Sediments, Zoological Indicators, Vol. 2., Kluwer Academic Publishers Dordrecht: 239–269.CrossRefGoogle Scholar
  37. Rautio, M., 1998. Community structure of crustacean zooplankton in subarctic ponds: effects of altitude and physical heterogeneity. Ecography 21: 327–335.CrossRefGoogle Scholar
  38. Restrepo, A., P. Colinvaux, M. B. Bush, A. Correa-Metrio, J. L. Conroy, M. R. Gardener, P. Jaramillo, M. Steinitz-Kannan & J. T. Overpeck, 2012. Impacts of climate variability and human colonization on the vegetation of the Galapagos Islands. Ecology 93: 1853–1866.PubMedCrossRefGoogle Scholar
  39. Shapiera, M., M. Jeziorski, N. D. Yan & J. P. Smol, 2011. Calcium content of littoral Cladocera in three softwater lakes of the Canadian Shield. Hydrobiologia 678: 77–83.CrossRefGoogle Scholar
  40. Szeroczyńska, K., 1991. Impact of prehistoric settlements on the Cladocera in the sediments of Lasek Suszek, Bledowo and Skrzetuszewskie. Hydrobiologia 225: 102–114.Google Scholar
  41. Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of Subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie.Google Scholar
  42. Tunowski, J. 1992. Zooplankton jezior dystroficznych WPN. In Zdanowski, B., et al. (eds), Jeziora Wigierskiego Parku Narodowego.Wydawnictwo Uniwersytetu w Białymstoku, Białystok.Google Scholar
  43. Whiteside, M. C., 1970. Danish Chydorid Cladocera: modern ecology and core studies. Ecological Monographs 40: 79–118.CrossRefGoogle Scholar
  44. Willén, E., 2003. Dominance patterns of planktonic algae in Swedish forest lakes. Hydrobiologia 502: 315–324.CrossRefGoogle Scholar
  45. Woszczyk, M., 2011. Paleolimnologiczna interpretacja krzemionki biogenicznej: dyskusja na przykładzie wybranych jezior Niżu Polskiego. Badania Fizjograficzne, Seria A. Geografia Fizyczna.Google Scholar
  46. Woszczyk, M., A. Bechtel & R. Cieśliński, 2011. Interactions between microbial degradation of sedimentary organic matter and lake hydrodynamics in shallow water bodies: insights from Lake Sarbsko (northern Poland). Journal of Limnology 70(2): 293–304.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Izabela Zawiska
    • 1
    Email author
  • Edyta Zawisza
    • 2
    • 5
  • Michał Woszczyk
    • 3
  • Krystyna Szeroczyńska
    • 2
  • Waldemar Spychalski
    • 4
  • Alexander Correa-Metrio
    • 5
  1. 1.Institute of Geography and Spatial OrganizationPolish Academy of SciencesWarsawPoland
  2. 2.Institute of Geological Sciences, Research Centre in WarsawPolish Academy of SciencesWarsawPoland
  3. 3.Department of Quaternary Geology and PalaeogeographyAdam Mickiewicz UniversityPoznanPoland
  4. 4.Department of Soil ScienceUniversity of Natural SciencesPoznanPoland
  5. 5.Instituto de Geología, Universidad Nacional Autónoma de MéxicoCiudad UniversitariaMexicoMexico

Personalised recommendations