, Volume 719, Issue 1, pp 353–382 | Cite as

Fire as a disturbance in mediterranean climate streams

  • Iraima VerkaikEmail author
  • Maria Rieradevall
  • Scott D. Cooper
  • John M. Melack
  • Tom L. Dudley
  • Narcís Prat


Mediterranean climate ecosystems are among the most fire-prone in the world; however, little is known about the effects of fire on mediterranean streams (med-streams). Fire impacts on med-streams are associated with increased runoff and erosion from severely burned landscapes during storms, particularly the first intense rains. Increased inputs of water, solutes, nutrients, sediment, organic matter, and ash to streams after fires are usually observed for months to up to 4 years. Return to pre-fire conditions is associated with vegetation recovery. Benthic algae, invertebrates, and fish are reduced to low levels by scouring floods after wildfire. If riparian zones are burned, benthic algae increase, and invertebrate communities become dominated by r-strategist species. Fishes are eradicated from reaches affected by intense wildfire and often do not re-colonize quickly because of downstream barriers. In general, med-stream communities appear to be more resilient to fire compared to streams in other ecosystems because of the rapid recovery of mediterranean upland and riparian vegetation and geomorphological conditions (1–4 years in med-streams vs 5–10 years in non-med streams). However, drought or mass sediment movements after fire can prolong fire effects. Studies of the long-term effects of fire and the consequences of fire management practices are still needed.


Fire Mediterranean streams Mediterranean ecosystems 



For California studies, the authors thank B. Goodridge, F. Setaro, and J. Harkness for assistance with field collections and chemical analyses; K. Klose (algae), S. Wiseman (invertebrates), D. Bennett (algae), T. Even (invertebrates and fish), C. Nelson (physical–chemical parameters), and S. Sadro (physical–chemical parameters) for assistance with collecting and processing stream samples; and S. Wiseman for help with manuscript preparation. Funding from the US National Science Foundation (grants OCE-9982105, OCE-0620276 and DEB-0952599) supported much of the research on stream responses to fires in the Santa Barbara, CA, USA, area and federal Joint Fire Science Program Grant no. 05-2-1-18 supported work on the responses of riparian zones to fire in California. In Catalonia (Spain), the Ministerio de Educación y Ciencia (scholarship BES-2005-9682 and projects FURIMED 1 CGL2004-01549 and FURIMED 2 CGL2008-03388) supported the research on stream responses to fire in Sant Llorenç del Munt Natural Park. The authors would like to thank the staff of the Sant Llorenç del Munt Natural Park (Diputació de Barcelona) for their collaboration. The authors are also grateful to other members of the F.E.M. research group at the Universitat de Barcelona for field assistance and, especially, to P. Fortuño for preparing Figs. 5 and 6. M. Vila-Escalé shared some of the data from her PhD thesis.

Supplementary material

10750_2013_1463_MOESM1_ESM.docx (762 kb)
Supplementary material 1 (DOCX 762 kb)


  1. Abramson, L., M. Chennell, E. Eisch, A. Glassco & T. Holley, 2009. Post-fire sedimentation and flood risk potential in the Mission Creek watershed of Santa Barbara. Group Project Report for the degree of Master’s in Environmental Science and Management. University of California, Santa Barbara, CA.Google Scholar
  2. ACA, 2006. BIORI. Protocol d’avaluació de la qualitat biològica dels rius. Agència Catalana de l’Aigua. Departament de Medi Ambient de la Generalitat de Catalunya, Barcelona.Google Scholar
  3. Agee, J., 1998. The landscape ecology of western forest fire regimes. Northwest Science 72: 24–34.Google Scholar
  4. Agee, J. K., C. S. Wright, N. Williamson & M. H. Huff, 2002. Foliar moisture content of Pacific Northwest vegetation and its relation to wildland fire behavior. Forest Ecology and Management 167: 57–66.CrossRefGoogle Scholar
  5. Alagona, P. S., S. D. Cooper, M. Capelli, M. Stoecker & P. Beedle, 2012. A history of steelhead and rainbow trout (Oncorhynchus mykiss) in the Santa Ynez River watershed, Santa Barbara County, California. Bulletin of the Southern California Academy of Sciences 111: 163–222.Google Scholar
  6. Arkle, R. S. & D. S. Pilliod, 2010. Prescribed fires as ecological surrogates for wildfires: a stream and riparian perspective. Forest Ecology and Management 259: 893–903.CrossRefGoogle Scholar
  7. Arkle, R. S., D. S. Pilliod & K. Strickler, 2010. Fire, flow and dynamic equilibrium in stream macroinvertebrate communities. Freshwater Biology 55: 299–314.CrossRefGoogle Scholar
  8. Backer, D. M., S. E. Jensen & G. R. McPherson, 2004. Impacts of fire-suppression activities on natural communities. Conservation Biology 18: 937–946.CrossRefGoogle Scholar
  9. Barro, S. C. & S. G. Conard, 1991. Fire effects on California chaparral systems: an overview. Environment International 17: 135–149.CrossRefGoogle Scholar
  10. Bêche, L. A. & V. H. Resh, 2007. Short-term climatic trends affect the temporal variability of macroinvertebrates in California ‘Mediterranean’ streams. Freshwater Biology 52: 2317–2339.CrossRefGoogle Scholar
  11. Bêche, L. A., S. L. Stephens & V. H. Resh, 2005. Effects of prescribed fire on a Sierra Nevada (California, USA) stream and its riparian zone. Forest Ecology and Management 218: 37–59.CrossRefGoogle Scholar
  12. Beeson, P. C., S. N. Martens & D. D. Breshears, 2001. Simulating overland flow following wildfire: mapping vulnerability to landscape disturbance. Hydrological Processes 15: 2917–2930.CrossRefGoogle Scholar
  13. Benda, L., D. Miller, P. Bigelow & K. Andras, 2003. Effects of post-wildfire erosion on channel environments, Boise River, Idaho. Forest Ecology and Management 178: 105–119.CrossRefGoogle Scholar
  14. Bendix, J. & C. M. Cowell, 2010a. Impacts of wildfire on the composition and structure of riparian forests in southern California. Ecosystems 13: 99–107.CrossRefGoogle Scholar
  15. Bendix, J. & C. M. Cowell, 2010b. Fire, floods and woody debris: interactions between biotic and geomorphic processes. Geomorphology 116: 297–304.CrossRefGoogle Scholar
  16. Beschta, R. L., J. J. Rhodes, J. B. Kauffman, R. E. Gresswell, G. W. Minshall, J. R. Karr, D. A. Perry, F. R. Hauer & C. A. Frissell, 2004. Postfire management on forested public lands of the western United States. Conservation Biology 18: 957–967.CrossRefGoogle Scholar
  17. Bisson, P. A., B. E. Rieman, C. Luce, P. F. Hessuburg, D. C. Lee, J. L. Kershner, G. H. Reeves & R. E. Gresswell, 2003. Fire and aquatic ecosystems of western USA: current knowledge and key questions. Forest Ecology and Management 178: 213–229.CrossRefGoogle Scholar
  18. Blahm, T. H. & G. R. Snyder, 1974. Effect of Chemical Fire Retardants on the Survival of Juvenile Salmonids. National Marine Fisheries Service, Prescott.Google Scholar
  19. Bond, W. & J. Keeley, 2005. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends in Ecology and Evolution 20: 387–394.PubMedCrossRefGoogle Scholar
  20. Bond, W., F. Woodward & G. Midgley, 2005. The global distribution of ecosystems in a world without fire. New Phytologist 165: 525–538.PubMedCrossRefGoogle Scholar
  21. Borchert, M. I. & D. C. Odion, 1995. Fire intensity and vegetation recovery in chaparral: a review. In Keeley, J. E. & T. Scott (eds), Brushfires in California: ecology and resource management. International Association of Wildland Fire, Fairfield, Washington: 91–100.Google Scholar
  22. Bowman, D. M., J. K. Balch, P. Artaxo, W. J. Bond, J. M. Carlson, M. A. Cochrane, C. M. D’Antonio, R. S. Defries, J. C. Doyle, S. P. Harrison, F. H. Johnston, J. E. Keeley, M. A. Krawchuk, C. A. Kull, J. B. Marston, M. A. Moritz, I. C. Prentice, C. I. Roos, A. C. Scott, T. W. Swetnam, G. R. van der Werf & S. J. Pyne, 2009. Fire in the Earth system. Science 324: 481–484.PubMedCrossRefGoogle Scholar
  23. Bradstock, R. A., J. E. Williams & A. M. Gill, 2002. Flammable Australia: the Fire Regimes and Biodiversity of a Continent. Cambridge University Press, Cambridge.Google Scholar
  24. Britton, D. L., 1990. Fire and the dynamics of allochthonous detritus in a South-African mountain stream. Freshwater Biology 24: 347–360.CrossRefGoogle Scholar
  25. Britton, D. L., 1991a. The benthic macroinvertebrate fauna of a South African mountain stream and its response to fire. Southern African Journal of Aquatic Science 17: 51–64.CrossRefGoogle Scholar
  26. Britton, D. L., 1991b. Fire and the chemistry of a South-African mountain stream. Hydrobiologia 218: 177–192.CrossRefGoogle Scholar
  27. Brooks, M. L. & R. A. Minnich, 2006. Fire in the southeastern deserts bioregion. In Sugihara, N. G., J. W. van Wagtendonk, J. Fites-Kaufman, K. E. Shaffer & A. E. Thode (eds), Fire in California ecosystems. University of California Press, Berkeley: 391–416.CrossRefGoogle Scholar
  28. Brooks, M. L., C. M. D’Antonio, D. M. Richardson, J. B. Grace, J. E. Keeley, J. M. DiTomaso, R. J. Hobbs, M. Pellant & D. Pyke, 2004. Effects of invasive alien plants on fire regimes. Bioscience 54: 677–688.CrossRefGoogle Scholar
  29. Bros, V., G. Moreno-Rueda & X. Santos, 2011. Does postfire management affect the recovery of Mediterranean communities? The case study of terrestrial gastropods. Forest Ecology and Management 261: 611–619.CrossRefGoogle Scholar
  30. Brown, P., P. Manders, D. Bands, F. Kruger & R. Andrag, 1991. Prescribed burning as a conservation management practice: a case history from the Cederberg Mountains, Cape Province, South Africa. Biological Conservation 56: 133–150.CrossRefGoogle Scholar
  31. Burrows, N. D., B. Ward & A. D. Robinson, 1995. Jarrah forest fire history from stem analysis and anthropological evidence. Australian Forestry 58: 7–16.CrossRefGoogle Scholar
  32. Burton, T. A., 2005. Fish and stream habitat risks from uncharacteristic wildfire: observations from 17 years of fire-related disturbances on the Boise National Forest, Idaho. Forest Ecology and Management 211: 140–149.CrossRefGoogle Scholar
  33. Bury, R. B., 2004. Wildfire, fuel reduction, and herpetofaunas across diverse landscape mosaics in Northwestern forests. Conservation Biology 18: 968–975.CrossRefGoogle Scholar
  34. Campeny, R., 2007. Seguiment de les Poblacions d’anfibis del Parc Natural de Sant Llorenç del Munt i l’Obac. Diputació de Barcelona, Oficina Tècnica de Parcs Naturals, Barcelona.Google Scholar
  35. Candela, A., G. Aronica & M. Santoro, 2005. Effects of forest fires on flood frequency curves in a Mediterranean catchment. Hydrological Sciences Journal 50: 193–206.CrossRefGoogle Scholar
  36. Carrión, J. S., P. Sánchez-Gómez, J. F. Mota, R. Yll & C. Chaín, 2003. Holocene vegetation dynamics, fire and grazing in the Sierra de Gádor, southern Spain. Holocene 13: 839–849.CrossRefGoogle Scholar
  37. Cerdà, A. & S. H. Doerr, 2005. Influence of vegetation recovery on soil hydrology and erodibility following fire: an 11-year investigation. International Journal of Wildland Fire 14: 423–437.CrossRefGoogle Scholar
  38. Chen, J., S. Saunders, T. Crow, R. J. Naiman, K. Brosofske, G. Mroz, B. Brookshire & J. F. Franklin, 1999. Microclimate in forest ecosystem and landscape ecology. Bioscience 49: 288–297.CrossRefGoogle Scholar
  39. Coffman, G. C., R. F. Ambrose & P. W. Rundel, 2010. Wildfire promotes dominance of invasive giant reed (Arundo donax) in riparian ecosystems. Biological Invasions 12: 2723–2734.CrossRefGoogle Scholar
  40. Coombs, J. S., 2006. The impact of fire on hydrology and suspended sediment and nutrient export in southern California chaparral watersheds. Master’s thesis. University of California, Santa Barbara, CA.Google Scholar
  41. Coombs, J. S. & J. M. Melack, 2012. The initial impacts of a wildfire on hydrology and suspended sediment and nutrient export in California chaparral watersheds. Hydrological Processes.Google Scholar
  42. Cooper, S. D., 2009. Fish kill in Maria Ygnacio Creek associated with the Jesusita Fire, Memo to M.H. Capelli, National Marine Fisheries Service, Santa Barbara, CA.Google Scholar
  43. Cowell, A. L., T. G. Matthews & P. R. Lind, 2006. Effect of fire on benthic algal assemblage structure and recolonization in intermittent streams. Austral Ecology 31: 696–707.CrossRefGoogle Scholar
  44. Cowling, R. M., P. W. Rundel, B. B. Lamont, M. K. Arroyo & M. Arianoutsou, 1996. Plant diversity in mediterranean-climate regions. Trends in Ecology & Evolution 11: 362–366.CrossRefGoogle Scholar
  45. Cowling, R. M., F. Ojeda, B. B. Lamont, P. W. Rundel & R. Lechmere-Oertel, 2005. Rainfall reliability, a neglected factor in explaining convergence and divergence of plant traits in fire-prone mediterranean-climate ecosystems. Global Ecology and Biogeography 14: 509–519.CrossRefGoogle Scholar
  46. Davis, F. W., E. A. Keller, A. Parikh & J. Florsheim, 1989. Recovery of the chaparral riparian zone after wildfire. In Abell, D. L. (Technical Coordinator), Proceedings of the California Riparian Systems Conference. United States Forest Service General Technical Report PSW-110, Berkeley, CA: 194–203.Google Scholar
  47. DeBano, L. F., 2000. The role of fire and soil heating on water repellency in wildland environments: a review. Journal of Hydrology 231: 195–206.CrossRefGoogle Scholar
  48. DeBano, L. F., D. G. Neary & P. F. Folliott, 1998. Fire’s Effect on Ecosystems. Wiley, New York.Google Scholar
  49. Doerr, S., A. Ferreira, R. Walsh, R. Shakesby, G. Leighton Boyce & C. Coelho, 2003. Soil water repellency as a potential parameter in rainfall runoff modelling: experimental evidence at point to catchment scales from Portugal. Hydrological Processes 17: 363–377.CrossRefGoogle Scholar
  50. Dudley, T. L., 2000. Arundo donax. In Bossard, C. C., J. M. Randall & M. C. Hoshovsky (eds), Invasive plants of California’s wildlands. University of California Press, Berkeley: 53–58.Google Scholar
  51. Dudley, T., M. Brooks, K. Acharya, D. Bean, B. Conrad, C. Deuser, G. Drus, M. Kuehn, I. Kuczynska, K. Hultine, J. R. Matchett, S. M. Ostoja & S. Roberts, 2011. Effectiveness Monitoring of Springfed Wetlands and riparian Restoration Treatments: Progressive Management of Invasive Tamarisk in the Southern Nevada Region. Final Report for Clark County Desert Conservation Program, Las Vegas.Google Scholar
  52. Dunham, J. B., M. K. Young, R. E. Gresswell & B. E. Rieman, 2003. Effects of fire on fish populations: landscape perspectives on persistence of native fishes and nonnative fish invasions. Forest Ecology and Management 178: 183–196.CrossRefGoogle Scholar
  53. Dwire, K. A. & J. B. Kauffman, 2003. Fire and riparian ecosystems in landscapes of the western USA. Forest Ecology and Management 178: 61–74.CrossRefGoogle Scholar
  54. Earl, S. R. & D. W. Blinn, 2003. Effects of wildfire ash on water chemistry and biota in South-Western USA streams. Freshwater Biology 48: 1015–1030.CrossRefGoogle Scholar
  55. Ellis, L. M., 2001. Short-term response of woody plants to fire in a Rio Grande riparian forest, Central New Mexico, USA. Biological Conservation 97: 159–170.CrossRefGoogle Scholar
  56. Engle, D. L., J. O. Sickman, C. M. Moore, A. M. Esperanza, J. M. Melack & J. E. Keeley, 2008. Biogeochemical legacy of prescribed fire in a giant sequoia-mixed conifer forest: a 16-year record of watershed balances. Journal of Geophysical Research 113: G01014.CrossRefGoogle Scholar
  57. Farrés-Corell, R., 2005. Efectes d’un incendi forestal sobre la comunitat de fitobentos a la riera de Gallifa (Vallès Occidental). Master thesis. Universitat de Barcelona, Barcelona.Google Scholar
  58. Fernandes, P. M. & H. S. Botelho, 2003. A review of prescribed burning effectiveness in fire hazard reduction. International Journal of Wildland Fire 12: 117–128.CrossRefGoogle Scholar
  59. Fernandes, P. M. & H. S. Botelho, 2004. Analysis of the prescribed burning practice in the pine forest of northwestern Portugal. Journal of Environmental Management 70: 15–26.PubMedCrossRefGoogle Scholar
  60. Fernandes, P. M., J. A. Vega, E. Jimenez & E. Rigolot, 2008. Fire resistance of European pines. Forest Ecology and Management 256: 246–255.CrossRefGoogle Scholar
  61. Flannigan, M., M. Krawchuk, W. de Groot, B. Wotton & L. Gowman, 2009. Implications of changing climate for global wildland fire. International Journal of Wildland Fire 18: 83–507.CrossRefGoogle Scholar
  62. Florsheim, J. L., E. A. Keller & D. W. Best, 1991. Fluvial sediment transport in response to moderate storm flows following chaparral wildfire, Ventura County, southern California. Geological Society of America Bulletin 103: 504–511.CrossRefGoogle Scholar
  63. Fuentes, E. R., A. M. Segura & M. Holmgren, 1994. Are the Responses of Matorral Shrubs Different From Those in an Ecosystem with a Reputed Fire History? Ecological Studies, Vol. 16. Springer, New York.Google Scholar
  64. Gabet, E. J., 2003. Post-fire thin debris flows: sediment transport and numerical modeling. Earth Surface Processes and Landforms 28: 1341–1348.CrossRefGoogle Scholar
  65. Gabet, E. J. & T. Dunne, 2003. A stochastic sediment delivery model for a steep Mediterranean landscape. Water Resources Research 39: 1–12.Google Scholar
  66. Gaikowski, M. P., S. J. Hamilton, K. J. Buhl, S. F. McDonald & C. H. Summers, 1996. Acute toxicity of three fire retardant and two fire suppressant foam formulations to the early life stages of rainbow trout (Oncorhynchus mykiss). Environmental Toxicology and Chemistry 15: 1365–1374.Google Scholar
  67. Gama, M., A. L. Goncalves, V. Ferreira, M. A. S. Graça & C. Canhoto, 2007. Decomposition of fire exposed Eucalyptus leaves in a Portuguese lowland stream. International Review of Hydrobiology 92: 229–241.CrossRefGoogle Scholar
  68. Gamradt, S. C. & L. B. Kats, 1997. Impact of chaparral wildfire-induced sedimentation on oviposition of stream breeding California newts (Taricha torosa). Oecologia 4: 546–549.CrossRefGoogle Scholar
  69. Gasith, A. & V. H. Resh, 1999. Streams in Mediterranean climate regions: abiotic influences and biotic responses to predictable seasonal events. Annual Review of Ecology and Systematics 30: 51–81.CrossRefGoogle Scholar
  70. Goldammer, J. G. & B. Seibert, 1990. Fire in the Tropical Biota: Ecosystem Processes and Global Challenges. Spring, Berlin.CrossRefGoogle Scholar
  71. Gresswell, R. E., 1999. Fire and aquatic ecosystems in forested biomes of North America. Transactions of the American Fisheries Society 128: 193–221.CrossRefGoogle Scholar
  72. Guinart, D., 2007. Restauració de l’ecosistema cremat al sector oriental del Parc Natural de Sant Llorenç del Munt i l’Obac. VI Monografies de Sant Llorenç de Munt i l’Obac: 37–44.Google Scholar
  73. Guzzetti, F., S. Peruccacci, M. Rossi & C. P. Stark, 2008. The rainfall intensity-duration control of shallow landslides and debris flows: an update. Landslides 5: 3–17.CrossRefGoogle Scholar
  74. Hall, S. & D. Lombardozzi, 2008. Short-term effects of wildfire on montane stream ecosystems in the southern Rocky Mountains: one and two years post-burn. Western North American Naturalist 68: 453–462.CrossRefGoogle Scholar
  75. Halofsky, J. E. & D. E. Hibbs, 2008. Determinants of riparian fire severity in two Oregon fires, USA. Canadian Journal of Forest Research 38: 1959–1973.CrossRefGoogle Scholar
  76. Halofsky, J. E. & D. E. Hibbs, 2009. Controls on early post-fire woody plant colonization in riparian areas. Forest Ecology and Management 258: 1350–1358.CrossRefGoogle Scholar
  77. Halsey, R. W., 2008. Fire, Chaparral, and Survival in Southern California, 2nd ed. Sunbelt Publications, San Diego.Google Scholar
  78. Hossack, B. R., P. S. Corn & D. B. Fagre, 2006. Divergent patterns of abundance and age-class: structure of headwater stream tadpoles in burned and unburned watersheds. Canadian Journal of Zoology 84: 1482–1488.CrossRefGoogle Scholar
  79. Inbar, M., M. Tamir & L. Wittenberg, 1998. Runoff and erosion processes after a forest fire in Mount Carmel, a Mediterranean area. Geomorphology 24: 17–33.CrossRefGoogle Scholar
  80. Jacobsen A. L., S. D. Davis & S. L. Fabritius, 2004. Fire frequency impacts non-sprouting chaparral shrubs in the Santa Monica Mountains of southern California. In Arianoutsou, M. & V.P. Papanastasis (eds), Ecology, Conservation and Management of Mediterranean Climate Ecosystems. Millpress, Rotterdam.Google Scholar
  81. Karr, J. R., J. J. Rhodes, G. W. Minshall, F. R. Hauer, R. L. Beschta, C. A. Frissell & D. A. Perry, 2004. The effects of postfire salvage logging on aquatic ecosystems in the American West. BioScience 54: 1029–1033.CrossRefGoogle Scholar
  82. Keeley, J. E., 1982. Distribution of lightning and man-caused wildfires in California. In Conrad C.E. & W. C. Oechel (eds), Proceedings of the International Symposium on the Dynamics and Management of Mediterranean Type Ecosystems. USDA Forest Service, Berkeley. General Technical Report PSW-58: 431–437.Google Scholar
  83. Keeley, J. E., 2002. Native American impacts on fire regimes of the California coastal ranges. Journal of Biogeography 29: 303–320.CrossRefGoogle Scholar
  84. Keeley, J. E., 2004. Impact of antecedent climate on fire regimes in coastal California. International Journal of Wildland Fire 13: 173–182.CrossRefGoogle Scholar
  85. Keeley, J. E., 2006. Fire management impacts on invasive plants in the western United States. Conservation Biology 20: 375–384.PubMedCrossRefGoogle Scholar
  86. Keeley, J. E., 2009. Fire intensity, fire severity and burn severity: a brief review and suggested usage. International Journal of Wildland Fire 18: 116–126.CrossRefGoogle Scholar
  87. Keeley, J. E., C. Fotheringham & M. Morais, 1999. Reexamining fire suppression impacts on brushland fire regimes. Science 284: 1829.PubMedCrossRefGoogle Scholar
  88. Keeley, J. E., M. B. Keeley & C. J. Fotheringham, 2005. Alien plant dynamics following fire in Mediterranean-climate California shrublands. Ecological Applications 15: 2109–2125.CrossRefGoogle Scholar
  89. Keeley, J. E., H. Safford, C. J. Fotheringham, J. Franklin & M. Moritz, 2009a. The 2007 southern California wildfires: lessons in complexity. Journal of Forestry 107: 287–296.Google Scholar
  90. Keeley, J. E., G. H. Aplet, N. L. Christensen, S. C. Conard, E. A. Johnson, P. N. Omi, D. L. Peterson & T. W. Swetnam, 2009b. Ecological Foundations for Fire Management in North American Forest and Shrubland Ecosystems. Department of Agriculture, Forest Service, Pacific Northwest Research Station, Portland.Google Scholar
  91. Keeley, J. E., J. W. Bond, R. A. Bradstock, J. G. Pausas & P. W. Rundel, 2012. Fire in Mediterranean Ecosystems: Ecology, Evolution and Management. Cambridge University Press, Cambridge.Google Scholar
  92. Keller, E. A., D. W. Valentine & D. R. Gibbs, 1997. Hydrologic response of small watersheds following the southern California Painted Cave Fire of June 1990. Hydrological Processes 11: 401–414.CrossRefGoogle Scholar
  93. Kerby, J. L. & L. B. Kats, 1998. Modified interactions between salamander life stages caused by wildfire-induced sedimentation. Ecology 79: 740–745.CrossRefGoogle Scholar
  94. Kobziar, L. N. & J. R. McBride, 2006. Wildfire burn patterns and riparian vegetation response along two northern Sierra Nevada streams. Forest Ecology and Management 222: 254–265.CrossRefGoogle Scholar
  95. Komarek, E. V., 1964. The natural history of lightning. Proceedings of the Tall Timbers Fire Ecology Conference, Tall Timbers, Tallahassee, FL 3: 139–183.Google Scholar
  96. Koetsier, P., Q. Tuckett & J. White, 2007. Present effects of past wildfires on the diets of stream fish. Western North American Naturalist 67: 429–438.CrossRefGoogle Scholar
  97. Koetsier, P., T. R. B. Krause & Q. M. Tuckett, 2010. Present effects of past wildfires on leaf litter breakdown in stream ecosystems. Western North American Naturalist 70: 164–174.CrossRefGoogle Scholar
  98. Kruger, F. J. & R. C. Bigalke, 1984. Fire in fynbos. In Booysen, P. V. & N. M. Tainton (eds), Ecological Effects of Fire in South African Ecosystems. Springer, New York: 67–114.CrossRefGoogle Scholar
  99. Lambert, A. M., C. M. D’Antonio & T. L. Dudley, 2010. Invasive species and fire in California ecosystems. Fremontia 38: 29–36.Google Scholar
  100. Lavabre, J. & C. Martin, 1997. Impact d’un incendie de forêt sur l’hydrologie et l’érosion hydrique d’un petit bassin versant méditerranéan. In Walling, D. E. & J. L. Probst (eds), Proceedings of Rabat Symposium S6, 1997. Human Impact on Erosion and Sedimentation, vol 245. IAHS Press, Wallingford: 39–47.Google Scholar
  101. Lavabre, J., D. S. Torres & F. Cernesson, 1993. Changes in the hydrological response of a small Mediterranean basin a year after a wildfire. Journal of Hydrology 142: 273–299.CrossRefGoogle Scholar
  102. Lavorel, S., M. Flannigan, E. Lambin & M. Scholes, 2007. Vulnerability of land systems to fire: interactions among humans, climate, the atmosphere, and ecosystems. Mitigation and Adaptation Strategies for Global Change 12: 33–53.CrossRefGoogle Scholar
  103. Le Houérou, H. N., 1987. Vegetation wildfires in the Mediterranean basin: evolution and trends. Ecologia Mediterranea 13: 13–24.Google Scholar
  104. Le Maitre, D. C., M. Gaertner, E. Marchante, E.-J. Ens, P. M. Holmes, A. Pauchard, P. J. O’Farrell, A. M. Rogers, R. Blanchard, J. Blignaut & D. M. Richardson, 2011. Impacts of invasive Australian acacias: implications for management and restoration. Diversity and Distributions 17: 1015–1029.CrossRefGoogle Scholar
  105. Leith, H. & R. H. Whittaker, 1975. Primary Production of the Biosphere Ecological Studies, Vol. 14. Springer, New York.CrossRefGoogle Scholar
  106. Lenihan, J. M., R. Drapek, D. Bachelet & R. P. Neilson, 2003. Climate change effects on vegetation distribution, carbon, and fire in California. Ecological Applications 13: 1667–1681.CrossRefGoogle Scholar
  107. Lloret, F. & P. H. Zedler, 2009. The effect of forest fire on vegetation. In Cerdà, A. & P. R. Rochibaud (eds), Fire effects on soils and restoration strategies of series, Vol. 5., Land and Reconstruction and Management Science Publishers, Oxford: 257–295.CrossRefGoogle Scholar
  108. Loaiciga, H. A., D. Pedreros & D. Roberts, 2001. Wildfire-streamflow interactions in a chaparral watershed. Advances in Environmental Research 5: 295–305.CrossRefGoogle Scholar
  109. Lombardo, K. J., T. W. Swetnam, C. H. Baisan & M. I. Borchert, 2009. Using bigcone Douglas-fir fire scars and tree rings to reconstruct interior chaparral fire history. Fire Ecology 5: 32–53.CrossRefGoogle Scholar
  110. Malison, R. W. & C. V. Baxter, 2010a. Effects of wildfire of varying severity on benthic stream insect assemblages and emergence. Journal of the North American Benthological Society 29: 1324–1338.CrossRefGoogle Scholar
  111. Malison, R. W. & C. V. Baxter, 2010b. The fire pulse: wildfire stimulates flux of aquatic prey to terrestrial habitats driving increases in riparian consumers. Canadian Journal of Fisheries and Aquatic Sciences 67: 570–579.CrossRefGoogle Scholar
  112. Mast, M. A. & D. W. Clow, 2008. Effects of 2003 wildfires on stream chemistry in Glacier National Park, Montana. Hydrological Processes 22: 5013–5023.CrossRefGoogle Scholar
  113. Mayor, A., S. Bautista, J. Llovet & J. Bellot, 2007. Post-fire hydrological and erosional responses of a Mediterranean landscape: seven years of catchment-scale dynamics. Catena 71: 68–75.CrossRefGoogle Scholar
  114. McIver, J. D. & C. P. Weatherspoon, 2010. On conducting a multisite, multidisciplinary forestry research project: lessons from the National Fire and Fire Surrogate Study. Forest Science 56: 4–17.Google Scholar
  115. McMichael, C. E., A. S. Hope, D. A. Roberts & M. R. Anaya, 2004. Post-fire recovery of leaf area index in California chaparral: a remote sensing-chronosequence approach. International Journal of Remote Sensing 25: 4743–4760.CrossRefGoogle Scholar
  116. Meixner, T., M. E. Fenn, P. Wohlgemuth, M. Oxford & P. Riggan, 2006. N saturation in chaparral catchments are not reversed by prescribed fire. Environmental Science and Technology 40: 2887–2894.PubMedCrossRefGoogle Scholar
  117. Mellon, C. D., M. S. Wipfli & J. L. Li, 2008. Effects of forest fire on headwater stream macroinvertebrate communities in eastern Washington, USA. Freshwater Biology 53: 2331–2343.Google Scholar
  118. Mihuc, T. B. & G. W. Minshall, 1995. Trophic generalists vs. trophic specialists – implications for food-web dynamics in postfire streams. Ecology 76: 2361–2372.CrossRefGoogle Scholar
  119. Mihuc, T. B. & G. W. Minshall, 2005. The trophic basis of reference and post-fire stream food webs 10 years after wildfire in Yellowstone National Park. Aquatic Sciences 67: 541–548.Google Scholar
  120. Miller, D., C. Luce & L. Benda, 2003. Time, space, and episodicity of physical disturbance in streams. Forest Ecology and Management 178: 121–140.CrossRefGoogle Scholar
  121. Miller, J. D., H. D. Safford, M. Crimmins & A. E. Thode, 2009. Quantitative evidence for increasing forest fire severity in the Sierra Nevada and southern Cascade Mountains, California and Nevada, USA. Ecosystems 12: 16–32.CrossRefGoogle Scholar
  122. Minshall, G. W., 2003. Responses of stream benthic macroinvertebrates to fire. Forest Ecology and Management 178: 155–161.CrossRefGoogle Scholar
  123. Minshall, G. W., J. T. Brock & J. D. Varley, 1989. Wildfires and Yellowstone’s stream ecosystems. BioScience 39: 707–715.CrossRefGoogle Scholar
  124. Minshall, G. W., C. T. Robinson, T. V. Royer & S. R. Rushforth, 1995. Benthic community structure in two adjacent streams in Yellowstone National Park 5 years after the 1988 wildfires. Great Basin Naturalist 55: 193–200.Google Scholar
  125. Minshall, G. W., C. T. Robinson & D. E. Lawrence, 1997. Postfire responses of lotic ecosystems in Yellowstone National Park, USA. Canadian Journal of Fisheries and Aquatic Sciences 54: 2509–2525.Google Scholar
  126. Minshall, G. W., C. T. Robinson, D. E. Lawrence, D. A. Andrews & J. T. Brock, 2001a. Water quality, substratum and biotic responses of five central Idaho (USA) streams during the first year following the Mortar Creek fire. International Journal of Wildland Fire 10: 185–199.CrossRefGoogle Scholar
  127. Minshall, G. W., C. T. Robinson, D. E. Lawrence, D. A. Andrews & J. T. Brock, 2001b. Benthic macroinvertebrate assemblages in five central Idaho (USA) streams over a 10-year period following disturbance by wildfire. International Journal of Wildland Fire 10: 201–213.CrossRefGoogle Scholar
  128. Minshall, G. W., T. V. Royer & C. T. Robinson, 2001c. Response of the Cache Creek macroinvertebrates during the first 10 years following disturbance by the 1988 Yellowstone wildfires. Canadian Journal of Fisheries and Aquatic Sciences 58: 1077–1088.CrossRefGoogle Scholar
  129. Molles, M. C., 1982. Trichopteran communities of streams associated with aspen and conifer forests – long-term structural change. Ecology 63: 1–6.CrossRefGoogle Scholar
  130. Moreno, J. M. & W. C. Oechel, 1994. The Role of Fire in Mediterranean-type Ecosystems. Ecological Studies. Springer, New York, NY.CrossRefGoogle Scholar
  131. Moritz, M. A., 2003. Spatiotemporal analysis of controls on shrubland fire regimes: age dependency and fire hazard. Ecology 84: 351–361.CrossRefGoogle Scholar
  132. Moritz, M. A., J. E. Keeley, E. A. Johnson & A. A. Schaffner, 2004. Testing a basic assumption of shrubland fire management: does the hazard of burning increase with the age of fuels? Frontiers in Ecology and the Enviroment 2: 67–72.CrossRefGoogle Scholar
  133. Munné, A. & N. Prat, 2011. Effects of Mediterranean climate annual variability on stream biological quality assessment using macroinvertebrate communities. Ecological Indicators 11: 651–662.CrossRefGoogle Scholar
  134. Muñoz, M. R. & E. R. Fuentes, 1989. Does fire induce shrub germination in the Chilean matorral? Oikos 56: 177–181.CrossRefGoogle Scholar
  135. Múrria, C., C. Zamora-Muñoz, N. Bonada, C. Ribera & N. Prat, 2010. Genetic and morphological approaches to the problematic presence of three Hydropsyche species of the pellucidula group (Trichoptera: hydropsychidae) in the westernmost Mediterranean Basin. Aquatic Insects 32: 85–98.CrossRefGoogle Scholar
  136. National Marine Fisheries Service, 2008. NOAA’s National Marine Fisheries Service’s reinitiated biological opinion on the effects of the U.S. Forest Service’s National Fire Retardant Programmatic Consultation, issued under the authority of section 7(a)(2) of the Endangered Species Act. NMFS Office of Protected Resources, Silver Spring: 8.Google Scholar
  137. Norris, L., H. Lorz & S. Gregory, 1991. Forest chemicals. American Fisheries Society Special Publication 19: 207–296.Google Scholar
  138. Nyman, P., G. J. Sheridan, H. G. Smith & P. N. J. Lane, 2011. Evidence of debris flow occurrence after wildfire in upland catchments of south-east Australia. Geomorphology 125: 383–401.CrossRefGoogle Scholar
  139. Ode, P. R., A. C. Rehn & J. T. May, 2005. A quantitative tool for assessing the integrity of southern coastal California streams. Environmental Management 35: 493–504.PubMedCrossRefGoogle Scholar
  140. Odion, D. C. & F. W. Davis, 2000. Fire, soil heating, and the formation of vegetation patterns in chaparral. Ecological Monographs 70: 149–169.CrossRefGoogle Scholar
  141. Olivella, M., T. Ribalta, A. De Febrer, J. Mollet & F. De Las Heras, 2006. Distribution of polycyclic aromatic hydrocarbons in riverine waters after Mediterranean forest fires. Science of the Total Environment 355: 156–166.PubMedCrossRefGoogle Scholar
  142. Pañella, P., 2011. Impacte de la gestió de la fusta cremada i del subsolat al Parc Natural de Sant Llorenç del Munt i l’Obac. VII Monografies de Sant Llorenç del Munt i l’Obac: 134–151.Google Scholar
  143. Pausas, J. G., 2004. Changes in fire and climate in the eastern Iberian Peninsula (Mediterranean basin). Climatic Change 63: 337–350.CrossRefGoogle Scholar
  144. Pausas, J. G. & S. Fernández-Muñoz, 2011. Fire regime changes in the Western Mediterranean Basin: from fuel-limited to drought-driven fire regime. Climatic Change 110: 215–226.CrossRefGoogle Scholar
  145. Pausas, J. & J. Keeley, 2009. A burning story: the role of fire in the history of life. BioScience 59: 593–601.CrossRefGoogle Scholar
  146. Pausas, J. G. & S. Paula, 2012. Fuel shapes the fire-climate relationship: evidence from Mediterranean ecosystems. Global Ecology and Biogeography 21: 1074–1082.CrossRefGoogle Scholar
  147. Pausas, J. G. & R. Vallejo, 1999. The role of fire in European Mediterranean Ecosystems. In Chuvieco, E. (ed.), Remote Sensing of Large Wildfires in the European Mediterranean Basin. Springer-Verlag, Berlin, Germany: 3–16.CrossRefGoogle Scholar
  148. Pausas, J. G., J. Llovet, A. Rodrigo & R. Vallejo, 2008. Are wildfires a disaster in the Mediterranean basin? – A review. International Journal of Wildland Fire 17: 713–723.CrossRefGoogle Scholar
  149. Pettit, N. E. & R. J. Naiman, 2007. Fire in the riparian zone: characteristics and ecological consequences. Ecosystems 10: 673–687.CrossRefGoogle Scholar
  150. Pilliod, D. S., R. B. Bury, E. J. Hyde, C. A. Pearl & P. S. Corn, 2003. Fire and amphibians in North America. Forest Ecology and Management 178: 163–181.CrossRefGoogle Scholar
  151. Piñol, J., M. Castellnou & K. J. Beven, 2007. Conditioning uncertainty in ecological models: assessing the impact of fire management strategies. Ecological Modelling 207: 34–44.CrossRefGoogle Scholar
  152. Prat, N. & A. Manzano, 2009. Resum executiu i taula resum. In Prat, N. & A. Manzano (eds), Aigua i canvi climatic Diagnosi dels impactes previstos a Catalunya. Agència Catalana de l’Aigua, Barcelona, Spain: 7–23.Google Scholar
  153. Prat, N. & M. Rieradevall, 2006. 25-years of biomonitoring in two mediterranean streams (Llobregat and Besòs basins, NE Spain). Limnetica 25: 541–550.Google Scholar
  154. Prat, N., M. Rieradevall, P. Fortuño, G. Pié, T. Puntí, R. Acosta, M. Cañedo-Argüelles, L. Jiménez, F. Llach, I. Perrée, L. Puértolas, P. Rodriguez-Lozano, R. Roig, N. Sánchez, N. Sellarés, I. Verkaik & C. Villamarín, 2012. La qualitat ecològica del Llobregat, Besòs, el Foix, la Tordera i el Ter. Informe 2011. Diputació de Barcelona. Àrea d’Espais Naturals (Estudis de la Qualitat Ecològica dels Rius), Barcelona, Spain.Google Scholar
  155. Prepas, E., N. Serediak, G. Putz & D.W. Smith, 2009. Fires. In Likens, G. E. (ed.), Encyclopedia of Inland Waters, Vol 3. Elsevier Science, Oxford, UK: 74–87.Google Scholar
  156. Prosser, I. P. & L. Williams, 1998. The effect of wildfire on runoff and erosion in native Eucalyptus forest. Hydrological Processes 12: 251–265.CrossRefGoogle Scholar
  157. Radford, I. J., A. C. Grice, B. N. Abbott, D. M. Nicholas & L. Whiteman, 2008. Impacts of changed fire regimes on tropical riparian vegetation invaded by an exotic vine. Austral Ecology 33: 151–167.CrossRefGoogle Scholar
  158. Reeves, G. H., P. A. Bisson, B. E. Rieman & L. E. Benda, 2006. Postfire logging in riparian areas. Conservation Biology 20: 994–1004.PubMedCrossRefGoogle Scholar
  159. Rehn, A. C., 2010. The Effects of Wildfire on Benthic Macroinvertebrates in Southern California. Report to the San Diego Regional Water Quality Control Board, San Diego, CA.Google Scholar
  160. Reiner, R. J., 2007. Fire in California grasslands. In Stromberg, M. R., J. D. Corbin & C. M. D’Antonio (eds), California Grasslands: Ecology and Management. University of California Press, Berkeley, California, USA: 207–217.Google Scholar
  161. Rice, R. M., 1974. The hydrology of chaparral watersheds. In Rosenthal, M. (ed.), Proceedings, Symposium on Living with the Chaparral, University of California, Riverside, CA. USA, Sierra Club, San Francisco, CA, USA: 27–34.Google Scholar
  162. Rieman, B. E., R. E. Gresswell, M. K. Young & C. H. Luce, 2003. The effects of wildland fire on aquatic ecosystems in the Western USA. Forest Ecology and Management 178: 1–3.CrossRefGoogle Scholar
  163. Riggan, P. J., R. N. Lockwood, P. J. Jacks, C. G. Colver, F. Weirich, L. F. DeBano & J. A. Brass, 1994. Effects of fire on nitrate mobilization in watersheds subject to chronic atmospheric deposition. Environmental Science and Technology 28: 369–375.PubMedCrossRefGoogle Scholar
  164. Rinne, J. N., 1996. Short-term effects of wildfire on fishes and aquatic macroinvertebrates in the southwestern United States. North American Journal of Fisheries Management 16: 653–658.CrossRefGoogle Scholar
  165. Robinson, C. T., S. R. Rushforth & G. W. Minshall, 1994. Diatom assemblages of streams influenced by wildfire. Journal of Phycology 30: 206–216.CrossRefGoogle Scholar
  166. Robinson, C. T., U. Uehlinger & G. W. Minshall, 2005. Functional characteristics of wilderness streams twenty years following wildfire. Western North American Naturalist 65: 1–10.Google Scholar
  167. Roby, K. & D. Azuma, 1995. Changes in a reach of a northern California stream following wildfire. Environmental Management 19: 591–600.CrossRefGoogle Scholar
  168. Rodrigo, A., J. Retana & X. Pico, 2004. Direct regeneration is not the only response of Mediterranean forests to large fires. Ecology 85: 716–729.CrossRefGoogle Scholar
  169. Rood, S. B., L. A. Goater, J. M. Mahoney, C. M. Pearce & D. G. Smith, 2007. Floods, fire, and ice: disturbance ecology of riparian cottonwoods. Canadian Journal of Botany 85: 1019–1032.CrossRefGoogle Scholar
  170. Rosenberger, A. E., J. B. Dunham, J. M. Buffington & M. S. Wipfli, 2011. Persistent effects of wildfire and debris flows on the invertebrate prey base of rainbow trout in Idaho streams. Northwest Science 85: 55–63.CrossRefGoogle Scholar
  171. Rothermel, R. C., 1983. How to predict the spread and intensity of forest and range fires. Gen. Tech. Rep. INT-143, US Department of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station, Ogden.Google Scholar
  172. Rubio, J. L., 1987. Desertificación en la Comunidad Valenciana: antecedentes históricos y situación actual de erosión. Revista Valenciana d’Estudis Autonòmics 7: 231–258.Google Scholar
  173. Ryan, S. E., K. A. Dwire & M. K. Dixon, 2011. Impacts of wildfire on runoff and sediment loads at little Granite Creek, western Wyoming. Geomorphology 129: 113–130.CrossRefGoogle Scholar
  174. Schultz, M., A. Heil, J. Hoelzemann, A. Spessa, K. Thonicke, J. Goldammer, A. Held, J. Pereira & M. van het Bolscher, 2008. Global wildland fire emissions from 1960 to 2000. Global Biogeochemical Cycles 22: 1–17.CrossRefGoogle Scholar
  175. Scott, D. F., 1993. The hydrological effects of fire in South African mountain catchments. Journal of Hydrology 150: 409–432.CrossRefGoogle Scholar
  176. Scott, D. & D. Van Wyk, 1990. The effects of wildfire on soil wettability and hydrological behaviour of an afforested catchment. Journal of Hydrology 121: 239–256.CrossRefGoogle Scholar
  177. Scott, D., D. Versfeld & W. Lesch, 1998. Erosion and sediment yield in relation to afforestation and fire in the mountains of the Western Cape Province, South Africa. South African Geographical Journal 80: 52–59.CrossRefGoogle Scholar
  178. Serra-Cobo, J., M. López-Roig & X. Bayer, 2010. Estudi Dels Quiròpters del Parc Natural de Sant Llorenç del Munt i l’Obac com a Base Per a la Seva Gestió Memòria Sant Llorenç 2010. Diputació de Barcelona, Barcelona.Google Scholar
  179. Sestrich, C. M., T. E. McMahon & M. K. Young, 2011. Influence of fire on native and non-native salmonid populations and habitat in a western Montana basin. Transactions of the American Fisheries Society 140: 136–146.Google Scholar
  180. Shakesby, R., 2011. Post-wildfire soil erosion in the Mediterranean: review and future research directions. Earth-Science Reviews 105(71): 100.Google Scholar
  181. Shakesby, R. A. & S. H. Doerr, 2006. Wildfire as a hydrological and geomorphological agent. Earth-Science Reviews 74: 269–307.CrossRefGoogle Scholar
  182. Shakesby, R., P. Wallbrink, S. Doerr, P. English, C. Chafer, G. Humphreys, W. Blake & K. Tomkins, 2007. Distinctiveness of wildfire effects on soil erosion in south-east Australian eucalypt forests assessed in a global context. Forest Ecology and Management 238: 347–364.CrossRefGoogle Scholar
  183. Shea, S., 1982. Multiple use management in a Mediterranean ecosystem: the Jarrah forest, a case study. In Conrad, C. E. & W. C. Oechel (eds), Proceedings of the International Symposium on the Dynamics and Management of Mediterranean Type Ecosystems. USDA Forest Service, General Technical Report PSW-58. Berkeley, CA: 49–55.Google Scholar
  184. Simpson, J. C., 2006. The effects of natural and anthropogenic perturbations on stream primary producer communities in southern California. PhD thesis, University of California, Santa Barbara, CA.Google Scholar
  185. Sinclair, J. D. & E. L. Hamilton, 1955. StreamflowReactions to a Fire-damaged Watershed. American Society of Civil Engineering, New York.Google Scholar
  186. Skinner, C. N., 2003. A tree-ring based fire history of riparian reserves in the Klamath Mountains. In Faber, P. M. (ed.), California Riparian Systems: Processes and Floodplains Management. Ecology and Restoration, Riparian Habitat Joint Venture, Sacramento, California, USA: 116–119.Google Scholar
  187. Sostoa, A., N. Caiola, D. Vinyoles & F. Casals, 2006. Diagnosi de les Poblacions de peixos del Parc Natural de Sant Llorenç del Munt i l’Obac. Diputació de Barcelona, Oficina Tècnica de Parcs Naturals, Barcelona.Google Scholar
  188. Spencer, C. N., K. O. Gabel & F. R. Hauer, 2003. Wildfire effects on stream food webs and nutrient dynamics in Glacier National Park, USA. Forest Ecology and Management 178: 141–153.CrossRefGoogle Scholar
  189. Spina, A. P. & D. R. Tormey, 2000. Postfire sediment deposition in geographically restricted steelhead habitat. North American Journal of Fisheries Management 20: 562–569.CrossRefGoogle Scholar
  190. Stein, E. D. & J. Brown, 2009. Effects of storm water on metals and PAHs. In Stein, E. D. & J. Brown (eds), Effects of Post-fire Runoff on Surface Water Quality: Development of a Southern California Regional Monitoring Program with Management Questions and Implementation Recommendations. Southern California Coastal Water Research Project, Costa Mesa, California, USA: 9–13.Google Scholar
  191. Stephens, S. L., R. E. Martin & N. E. Clinton, 2007. Prehistoric fire area and emissions from California’s forests, woodlands, shrublands and grasslands. Forest Ecology and Management 251: 205–216.CrossRefGoogle Scholar
  192. Stone, K. R., D. S. Pilliod, K. A. Dwire, C. C. Rhoades, S. P. Wollrab & M. K. Young, 2010. Fuel reduction management practices in riparian areas of the western USA. Environmental Management 46: 91–100.PubMedCrossRefGoogle Scholar
  193. Swanson, F. J., 1981. Fire and geomorphic processes. U.S. Forest Service General Technical Report WO-26, Washington, DC: 401–420.Google Scholar
  194. Syphard, A. D., J. Franklin & J. E. Keeley, 2006. Simulating the effects of frequent fire on southern California coastal shrublands. Ecological Applications 16: 1744–1756.PubMedCrossRefGoogle Scholar
  195. Syphard, A. D., V. C. Radeloff, J. E. Keeley, T. J. Hawbaker, M. K. Clayton, S. L. Stewart & R. B. Hammer, 2007. Human influence on California fire regimes. Ecological Applications 17: 1388–1402.PubMedCrossRefGoogle Scholar
  196. Syphard, A. D., V. C. Radeloff, T. J. Hawbaker & S. I. Stewart, 2009. Conservation threats due to human-caused increases in fire frequency in Mediterranean-climate ecosystems. Conservation Biology 25: 758–769.CrossRefGoogle Scholar
  197. Tague, C., L. Seaby & A. Hope, 2009. Modeling the eco-hydrologic response of a Mediterranean type ecosystem to the combined impacts of projected climate change and altered fire frequencies. Climatic Change 93: 137–155.CrossRefGoogle Scholar
  198. Terradas, J. (ed.), 1996. Ecologia del Foc. Edicions Proa, Barcelona.Google Scholar
  199. Van de Water, K. & M. North, 2010. Fire history of coniferous riparian forests in the Sierra Nevada. Forest Ecology and Management 260: 384–395.CrossRefGoogle Scholar
  200. Van de Water, K. & M. North, 2011. Stand structure, fuel loads, and fire behavior in riparian and upland forests, Sierra Nevada Mountains, USA; a comparison of current and reconstructed conditions. Forest Ecology and Fire Management 262: 215–228.CrossRefGoogle Scholar
  201. Van de Water, K. M. & H. D. Safford, 2011. A summary of fire frequency estimates for California vegetation before Euro-American settlement. Fire Ecology 7: 26–58.CrossRefGoogle Scholar
  202. van der Werf, G., J. Randerson, L. Giglio, N. Gobron & A. Dolman, 2008. Climate controls on the variability of fires in the tropics and subtropics. Global Biogeochemical Cycles 22: 1–13.Google Scholar
  203. Vaz, P. G., D. R. Warren, P. Pinto, E. C. Merten, C. T. Robinson & F. C. Rego, 2011. Tree type and forest management effects on the structure of stream wood following wildfires. Forest Ecology and Management 262: 561–570.CrossRefGoogle Scholar
  204. Vázquez, A. & J. M. Moreno, 1998. Patterns of lightning-, and people-caused fires in peninsular Spain. International Journal of Wildland Fire 8: 103–115.CrossRefGoogle Scholar
  205. Verkaik, I., 2010. Wildfire effects on macroinvertebrate communities in Mediterranean streams. PhD thesis, Universitat de Barcelona, Barcelona, Spain.Google Scholar
  206. Vieira, N. K. M., W. H. Clements, L. S. Guevara & B. F. Jacobs, 2004. Resistance and resilence of stream insect communities to repeated hydrologic disturbances after a wildfire. Freshwater Biology 49: 1243–1259.CrossRefGoogle Scholar
  207. Vieira, N. K. M., T. R. Barnes & K. A. Mitchell, 2011. Effects of wildfire and postfire floods on stonefly detritivores of the Pajarito Plateau, New Mexico. Western North American Naturalist 71: 257–270.CrossRefGoogle Scholar
  208. Vila-Escalé, M., 2009. Efectes d’un incendi forestal en una riera mediterrania (Sant Llorenç del Munt, 2003). PhD thesis, Universitat de Barcelona, Barcelona, Spain.Google Scholar
  209. Vila-Escalé, M., T. Vegas-Vilarrubia & N. Prat, 2007. Release of polycyclic aromatic compounds into a Mediterranean creek (Catalonia, NE Spain) after a forest fire. Water Research 41: 2171–2179.PubMedCrossRefGoogle Scholar
  210. Villero, D. & R. Campeny, 2005. Seguiment de les Poblacions d’anfibis del Parc Natural de Sant Llorenç del Munt i l’Obac. Diputació de Barcelona, Oficina Tècnica de Parcs Naturals, Barcelona.Google Scholar
  211. Wisheu, I. C., M. L. Rosenzweig, L. Olsvig-Whittaker & A. Shmida, 2000. What makes nutrient-poor Mediterranean heathlands so rich in plant diversity? Evolutionary Ecology Research 2: 935–955.Google Scholar
  212. Woodward, F. I., 1987. Climate and Plant Distribution. Cambridge University Press, Melbourne.Google Scholar
  213. Wright, B. R. & P. J. Clarke, 2007. Resprouting responses of Acacia shrubs in the Western Desert of Australia – fire severity, interval and season influence survival. International Journal of Wildland Fire 16: 317–323.CrossRefGoogle Scholar
  214. Zedler, P. H. & L. A. Seiger, 2000. Age mosaics and fire size in chaparral: A simulation study. In Keeley, J.E., M. Baer-Keeley & C. J. Fotheringharn (eds), 2nd Interface Between Ecology and Land Development in California, U.S. Geological Survey open file report 00-62, Sacramento, CA: 9–18.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Iraima Verkaik
    • 1
    Email author
  • Maria Rieradevall
    • 1
  • Scott D. Cooper
    • 2
  • John M. Melack
    • 2
  • Tom L. Dudley
    • 3
  • Narcís Prat
    • 1
  1. 1.Grup de Recerca F.E.M. (Freshwater Ecology and Management), Departament d’EcologiaUniversitat de BarcelonaBarcelonaSpain
  2. 2.Department of Ecology, Evolution and Marine BiologyUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Marine Science InstituteUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations