, Volume 706, Issue 1, pp 1–9 | Cite as

Long-term monitoring studies as a powerful tool in marine ecosystem research

  • Alexey SukhotinEmail author
  • Victor Berger


Global environmental challenges, such as climatic shifts, ocean acidification, and anthropogenic pressures urgently require detailed knowledge on functioning of the marine biota in order to create realistic models that predict future changes in populations, communities, and ecosystems. The long-term monitoring observations remain one of the best and sometimes the only way of acquiring knowledge on the complex seasonal and multiannual processes taking place in marine realms. This volume focuses on the long-term studies conducted for the past several decades in the White Sea, a relatively small marine basin located in sub-Arctic and Arctic zone in the northwest of Russia. It has a peculiar hydrologic structure: the upper water layers which experience strong seasonal temperature fluctuations and are inhabited by boreal organisms almost do not mix with the deeper waters which have negative temperatures the year round and are occupied by the Arctic species complex. The White Sea has a long-standing history of extensive environmental monitoring spanning all levels of the ecosystem. The goal of this special issue is to present the key findings of these studies to international research community and to identify environmental and biological processes that are involved in the ecosystem change of this important sub-Arctic marine basin.


Long-term data series Monitoring White Sea Ecosystems Marine biological stations 



The long-term studies at the White Sea Biological Station of the Zoological Institute RAS are funded by the Russian Academy of Sciences through different programs including “Biological resources of seas in Russia” and “Biological diversity”. While editing the present special issue AS was partly supported by a fellowship of the Hanse Wissenschaftskolleg (Delmenhorst, Germany). The authors thank Dr. Inna Sokolova for valuable comments and corrections of the manuscript.


  1. Babkov, A. I., 1998. Hydrology of the White Sea. Zoological Institute RAS, Saint-Petersburg (in Russian).Google Scholar
  2. Babkov, A. I. & A. N. Golikov, 1984. Hydrobiocomplexes of the White Sea. Zoological Institute AS USSR, Leningrad (in Russian).Google Scholar
  3. Becker, B. & B. Kromer, 1993. The continental tree-ring record—absolute chronology, 14C calibration and climatic change at 11 ka. Palaeogeography, Palaeoclimatology, Palaeoecology 103: 67–71.CrossRefGoogle Scholar
  4. Berger, V. Ja. (ed.), 1995. White Sea. Biological Resources and Problems of Their Exploitation. Part I. Zoological Institute RAS, Saint-Petersburg (in Russian).Google Scholar
  5. Berger, V. Ja. (ed.), 2012. Biological Resources of the White Sea: Investigation and Exploitation. Zoological Institute RAS, Saint-Petersburg (in Russian).Google Scholar
  6. Berger, V. Ja., S. Dahle, K. Galaktionov, X. Kosobokova, A. Naumov, T. Rat'kova, V. Savinov & T. Savinova (eds.), 2001. White Sea. Ecology and Environment. Derzavets Publisher, St.-Petersburg–Tromsø.Google Scholar
  7. Berger, V., A. Naumov, M. Zubaha, N. Usov, I. Smolyar, R. Tatusko & S. Levitus, 2003. 36-Year Time Series (1963–1998) of Zooplankton, Temperature and Salinity in the White Sea. Saint-Petersburg.Google Scholar
  8. Bobrov, Yu. A., M. P. Maximova, & V. M. Savinov, 1995. Phytoplankton primary production. In Berger, V. Ja. (ed.), White Sea. Biological Resources and Problems of Their Exploitation. Part I. Zoological Institute RAS, Saint-Petersburg: 92–114 (in Russian).Google Scholar
  9. Butler, P. G., A. D. Wanamaker Jr. J. D. Scourse, C. A. Richardson & D. J. Reynolds, 2012. Variability of marine climate on the North Icelandic Shelf in a 1357-year proxy archive based on growth increments in the bivalve Arctica islandica. Palaeogeography, Palaeoclimatology, Palaeoecology. doi: 10.1016/j.palaeo.2012.01.016.Google Scholar
  10. Corrége, T., 2006. Sea surface temperature and salinity reconstruction from coral geochemical tracers. Palaeogeography, Palaeoclimatology, Palaeoecology 232: 408–428.CrossRefGoogle Scholar
  11. Derjugin, K. M., 1928. Fauna of the White Sea and the Environmental Conditions of Its Existence. Explorations of the Fauna of the Seas of the USSR, Leningrad, 7–8, 512 p (in Russian).Google Scholar
  12. Duarte, C. M., J. Cebrián & N. Marbà, 1992. Uncertainty of detecting sea change. Nature 356: 190.CrossRefGoogle Scholar
  13. Ducklow, H. W., S. C. Doney & D. K. Steinberg, 2009. Contributions of long-term research and time-series observations to marine ecology and biogeochemistry. Annual Review of Marine Science 1: 279–302.PubMedCrossRefGoogle Scholar
  14. Fedorov, V. D., L. V. Ilyash, T. I. Kol’tsova, K. K. Sarukhan-Bek, N. A. Smirnov & V. V. Fedorov, 1995. Ecological studies of phytoplankton. In Berger, V. Ja. (ed.), White Sea. Biological Resources and Problems of Their Exploitation. Part I. Zoological Institute RAS, Saint-Petersburg: 79–91 (in Russian).Google Scholar
  15. Feistel, R., G. Nausch & N. Wasmund (eds), 2008. State and Evolution of the Baltic Sea, 1952–2005: A Detailed 50-Year Survey of Meteorology and Climate, Physics, Chemistry, Biology, and Marine Environment. Wiley, New York.Google Scholar
  16. Field, D. B., T. R. Baumgartner, C. D. Charles, V. Ferreira-Bartrina & M. D. Ohman, 2006. Planktonic foraminifera of the California current reflect 20th-century warming. Science 311: 63–66.PubMedCrossRefGoogle Scholar
  17. Filatov, N. N., A Yu Terzhevik, A. V. Litvinenko, P. V. Druzhinin, I. A. Neyelov & O. P. Savchuk, 2006. Investigations of the White Sea and its catchment basin as socio-ecologo-economic system. In Filatov, N. N., V. I. Kukharev, T. I. Regerand & V. Kh. Lifshitz (eds), Water Resources of the European North of Russia: Results and Perspectives. Karelian Research Centre RAS, Petrozavodsk: 436–462. (in Russian).Google Scholar
  18. Franke, H.-D., F. Buchholz & K. H. Wiltshire, 2004. Ecological long-term research at Helgoland (German Bight, North Sea): retrospect and prospect—an introduction. Helgoland Marine Research 58: 223–229.CrossRefGoogle Scholar
  19. Gerasimova, A. V. & N. V. Maximovich, 2013. Age-size structure of common bivalve mollusc populations in the White Sea: the causes of instability. Hydrobiologia. doi: 10.1007/s10750-012-1415-3.
  20. Giani, M., T. Djakovac, D. Degobbis, S. Cozzi, C. Solidoro & S. F. Umani, 2012. Recent changes in the marine ecosystems of the northern Adriatic Sea. Estuarine, Coastal and Shelf Science 115: 1–13.CrossRefGoogle Scholar
  21. Giry, C., T. Felis, M. Kölling & S. Scheffers, 2010. Geochemistry and skeletal structure of Diploria strigosa, implications for coral-based climate reconstruction. Palaeogeography, Palaeoclimatology, Palaeoecology 298: 378–387.CrossRefGoogle Scholar
  22. Granovitch, A. I. & A. N. Maximovich, 2013. Long-term population dynamics of Littorina obtusata: the spatial structure and impact of trematodes. Hydrobiologia, doi: 10.1007/s10750-012-1411-7.
  23. Halfar, J., S. Hetzinger, W. Adey, T. Zack, G. Gamboa, B. Kunz, B. Williams & D. E. Jacob, 2011. Coralline algal growth-increment widths archive North Atlantic climate variability. Palaeogeography, Palaeoclimatology, Palaeoecology 302: 71–80.CrossRefGoogle Scholar
  24. Hallmann, N., B. R. Schöne, A. Strom & J. Fiebig, 2008. An intractable climate archive—Sclerochronological and shell oxygen isotope analyses of the Pacific geoduck, Panopea abrupta (bivalve mollusk) from Protection Island (Washington State, USA). Palaeogeography, Palaeoclimatology, Palaeoecology 269: 115–126.CrossRefGoogle Scholar
  25. Ilyash, L. V., L. S. Zhitina & V. D. Fedorov, 2003. Phytoplankton of the White Sea. Janus-K, Moscow (in Russian).Google Scholar
  26. Ivanov, M. V., D. S. Smagina, S. M. Chivilev & O. E. Kruglikov, 2013. Degradation and recovery of an Arctic benthic community under organic enrichment. Hydrobiologia. doi: 10.1007/s10750-012-1298-3.
  27. Jennings, A., S. Hagen, J. Harđardóttir, R. Stein, E. J. A. E. J. Ogilvie & I. Jónsdóttir, 2001. Oceanographic change and terrestrial human impacts in a post A.D. 1400 sediment record from the southwest Iceland shelf. Climatic Change 48: 83–100.CrossRefGoogle Scholar
  28. Katsanevakis, S., A. Weber, C. Pipitone, M. Leopold, M. Cronin, M. Scheidat, T. K. Doyle, L. Buhl-Mortensen, P. Buhl-Mortensen, G. D’Anna, I. de Boois, P. Dalpadado, D. Damalas, F. Fiorentino, G. Garofalo, V. M. Giacalone, K. L. Hawley, Y. Issaris, J. Jansen, C. M. Knight, L. Knittweis, I. Kröncke, S. Mirto, I. Muxika, H. Reiss, H. R. Skjoldal & S. Vöge, 2012. Monitoring marine populations and communities: methods dealing with imperfect detectability. Aquatic Biology 16: 31–52.CrossRefGoogle Scholar
  29. Khaitov, V., 2013. Life in an unstable house: community dynamics in changing mussel beds. Hydrobiologia. doi: 10.1007/s10750-012-1283-x.
  30. Khalaman, V. V., 2013. Regular and irregular events in fouling communities in the White Sea. Hydrobiologia. doi: 10.1007/s10750-012-1432-2.
  31. Koshechkin, B. I., 1976. The new structural plan of the north-eastern part of the Baltic Shield. In Nature and the Economy of the North. Kola Research Center RAS, Apatity 4: 3–11 (in Russian).Google Scholar
  32. Kozminsky, E. V., 2013. Effects of environmental and biotic factors on the fluctuations of abundance of Littorina obtusata (Gastropoda: Littorinidae). Hydrobiologia. doi: 10.1007/s10750-012-1418-0.
  33. Levakin, I. A., K. E. Nikolaev & K. V. Galaktionov, 2013. Long-term variation in trematode (Trematoda, Digenea) component communities associated with intertidal gastropods is linked to abundance of final hosts. Hydrobiologia. doi: 10.1007/s10750-012-1267-x.
  34. Lukanin, V. V. & A. I. Babkov, 1985. Spring changes in salinity and temperature of the surface water layers of the White Sea and its impact on the distribution of organisms. In Biocenoses of the Chupa Inlet of the White Sea. Zoological Institute AS USSR, Leningrad: 94–98 (in Russian).Google Scholar
  35. Marfenin, N. N., F. Bolshakov & M. Mardashova, 2013. Fluctuations in settlement and survival of a barnacle Semibalanus balanoides at the White Sea intertidal. Hydrobiologia. doi: 10.1007/s10750-012-1377-5.
  36. Maximova, M. P., 1991. Hydrochemistry of the White Sea. In Hydrometeorology and Hydrochemistry of the Seas of the USSR. Gidrometeoizdat, Moscow. Part. 2: 8–193 (in Russian).Google Scholar
  37. Maximova, M. P., 2004. Comparative hydrochemistry of the seas. In New Ideas in Oceanology. Nauka, Moscow: 164–189 (in Russian).Google Scholar
  38. Modrasova, N. V. & V. D. Ventzel’, 1994. Distribution features of phytopigments and phytoplankton biomass in the White Sea in the summer season. In Comprehensive Research of the White Sea Ecosystem. VNIRO, Moscow: 83–91 (in Russian).Google Scholar
  39. Naumov, A. D., 2013. Long-term fluctuations of soft-bottom intertidal community structure affected by ice cover at two small sea bights in the Chupa Inlet (Kandalaksha Bay) of the White Sea. Hydrobiologia. doi: 10.1007/s10750-012-1339-y.
  40. Navarette, S. A., S. Gelcich & J. C. Castilla, 2010. Long-term monitoring of coastal ecosystems at Las Cruces, Chile: Defining baselines to build ecological literacy in a world of change. Revista Chilena de Historia Natural 83: 143–157.Google Scholar
  41. Ohman, M. D. & E. L. Venrick, 2003. CalCOFI in a changing ocean. Oceanography 16: 76–85.CrossRefGoogle Scholar
  42. Royer, A., M. de Angelis & J. R. Petit, 1983. A 30000 year record of physical and optical properties of microparticles from an East Antarctic ice core and implications for paleoclimate reconstruction models. Climatic Change 5: 381–412.Google Scholar
  43. Sapozhnikov, V. V. (ed.), 1994. Comprehensive Research of the White Sea Ecosystem. VNIRO, Moscow (in Russian).Google Scholar
  44. Sapozhnikov, V. V., N. V. Arzhanova & N. V. Modrasova, 2012. Hydrochemical basis of productivity. In Berger, V. Ja. (ed.), Biological Resources of the White Sea: Investigation and Exploitation. Chapter 2. Zoological Institute RAS, Saint-Petersburg: 13–33 (in Russian).Google Scholar
  45. Skazina, M., E. Sofronova & V. Khaitov, 2013. Paving the way for the new generations: Astarte borealis population dynamics in the White Sea. Hydrobiologia. doi: 10.1007/s10750-012-1271-1.
  46. Solbé, J. (ed.), 2005. Long-Term Monitoring. Why, What, Where, When & How? In Proceedings of a Workshop and Conference “The Importance of the Long-term Monitoring of the Environment” held by Sherkin Island Marine Station, 14–19 September 2003 on Sherkin Island, Co Cork, Ireland. Published by Sherkin Island Marine Station, Sherkin Island, Co. Cork, Ireland.Google Scholar
  47. Timonov, V. V., 1947. Scheme of the general water circulation of the White Sea basin and the origin of its deep waters. In Proceedings of the State Oceanological Institute, Moscow, 1(13): 118–131 (in Russian).Google Scholar
  48. Usov, N., I. Kutcheva, I. Primakov, & D. Martynova, 2013. Every species is good in its season: do the shifts in the annual temperature dynamics affect the phenology of the zooplankton species in the White Sea? Hydrobiologia. doi: 10.1007/s10750-012-1435-z.
  49. Varfolomeeva, M. & A. Naumov, 2013. Long-term temporal and spatial variation of macrobenthos in the intertidal soft-bottom flats of two small bights (Chupa Inlet, Kandalaksha Bay, White Sea). Hydrobiologia. doi: 10.1007/s10750-012-1341-4.
  50. Yakovis, E. L., A. V. Artemieva, M. V. Fokin, M. A. Varfolomeeva & N. N. Shunatova, 2013. Synchronous annual recruitment variation in barnacles and ascidians in the White Sea shallow subtidal 1999–2010. Hydrobiologia. doi: 10.1007/s10750-012-1340-5.
  51. Zenkevich, L. A., 1963. Biology of the Seas of the USSR. USSR Academy of Sciences, Moscow-Leningrad (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.White Sea Biological StationZoological Institute of Russian Academy of SciencesSaint PetersburgRussia

Personalised recommendations