Advertisement

Hydrobiologia

, Volume 715, Issue 1, pp 159–168 | Cite as

Demographic characteristics of cladocerans subject to predation by the flatworm Stenostomum leucops

  • S. NandiniEmail author
  • S. S. S. Sarma
CLADOCERA

Abstract

We present data on the population dynamics and life table demography of four common cladoceran taxa Ceriodaphnia dubia, Ceriodaphnia cornuta, Macrothrix triserialis, and Moina macrocopa at varying densities (0.04 and 0.16 ind ml−1) of the predatory flatworm Stenostomum leucops. We also studied the impact of S. leucops on competition between C. dubia, M. triserialis, and M. macrocopa. Experiments, with four replicates for each treatment, were conducted in 200 ml recipients with 50 ml of moderately hard water and the green alga Scenedesmus acutus at a concentration of 0.5 × 106 cells ml−1. We conducted all the experiments with single clones of each taxa. We found that Ceriodaphnia cornuta, regardless of the presence of its beak, was adversely affected to a greater degree than C. dubia due to the presence of the flatworms. Moina macrocopa and Macrothrix triserialis were adversely affected in the competition experiments due to the presence of the flatworms whereas C. dubia was not. The spines of Macrothrix triserialis were not an effective defense against predation by the worms. The population growth rate of Moina macrocopa was significantly higher (0.45 d−1) in the presence of S. leucops infochemicals than in controls (0.3 d−1).

Keywords

Turbellaria Predation Zooplankton Population growth rates Life history 

Notes

Acknowledgments

The authors thank H. J. Dumont for his comments on this study. Two anonymous reviewers have improved their presentation. The authors are grateful to DGAPA-PASPA (UNAM) for a sabbatical permission. This study was supported by PAPIIT-IN221111.

References

  1. Aránguiz-Acuña, A., R. Ramos-Jiliberto & R. O. Bustamante, 2011. Experimental evidence that induced defenses promote coexistence of zooplanktonic populations. Journal of Plankton Research 33: 469–477.CrossRefGoogle Scholar
  2. Beisner, B. E., E. McCauley & F. J. Wrona, 1997. Predator–prey instability: individual-level mechanisms for population-level. Functional Ecology 11: 112–120.CrossRefGoogle Scholar
  3. Blaustein, L. & H. J. Dumont, 1990. Typhloplanid flatworms (Mesostoma and related genera): mechanisms of predation and evidence that they structure aquatic invertebrate communities. Hydrobiologia 198: 68–77.CrossRefGoogle Scholar
  4. Borowitzka, M. A. & L. J. Borowitzka, 1988. Micro-algal biotechnology. Cambridge University Press, London.Google Scholar
  5. Buonanno, F., 2009. Anti-predator behavior of the freshwater Microturbellarian Stenostomum sphagnetorum against the predatory ciliate Dileptus margaritifer. Zoological Science 26: 443–447.PubMedCrossRefGoogle Scholar
  6. Chaparro-Herrera, D. J., S. Nandini, S. S. S. Sarma & L. Zambrano, 2011. Feeding behaviour of larval Ambystoma mexicanum. Amphibia-Reptilia 32: 509–517.CrossRefGoogle Scholar
  7. Dawidowicz, P., P. Predki & B. Pietrzak, 2010. Shortened lifespan: another cost of fish-predator avoidance in cladocerans? Hydrobiologia 643: 27–32.CrossRefGoogle Scholar
  8. De Roeck, E. R. M., T. Artois & L. Brendonck, 2005. Consumptive and non-consumptive effects of turbellarian (Mesostoma sp.) predation on anostracans. Hydrobiologia 542: 103–111.CrossRefGoogle Scholar
  9. Dodson, S. I., 1988. Cyclomorphosis in Daphnia galeata mendotae Birge and D. retrocurva Forbes as a predator-induced response. Freshwater Biology 19: 109–114.CrossRefGoogle Scholar
  10. Dumont, H. J. & I. Carels, 1987. Flatworm predator (Mesostoma cf. lingua) releases a toxin to catch planktonic prey (Daphnia magna). Limnology and Oceanography 32: 699–702.CrossRefGoogle Scholar
  11. Dumont, H. J. & S. Negrea, 2002. Introduction to the Class Branchiopoda. Guides to the Identification of the Microinvertebrates of the Continental Waters of the World. Backhuys Publishers, Leiden.Google Scholar
  12. Fyda, J., A. Warren & J. Wolinska, 2005. An investigation of predator-induced defense responses in ciliated protozoa. Journal of Natural History 39: 1431–1442.CrossRefGoogle Scholar
  13. Gliwicz, Z. M., 2003. Between hazards of starvation and risk of predation: the ecology of offshore animals. Excellence in Ecology Vol. 12. International Ecology Institute, Oldendorf.Google Scholar
  14. Gliwicz, Z. M., W. Wursbaugh & E. Szymanska, 2010. Absence of predation eliminates coexistence: experience from the fish zooplankton interface. Hydrobiologia 653: 103–117.CrossRefGoogle Scholar
  15. Hart, R. & E. Bychek, 2011. Body size in freshwater planktonic crustaceans: an overview of extrinsic determinants and modifying influences of biotic interactions. Hydrobiologia 668: 61–108.CrossRefGoogle Scholar
  16. Herwig, B. R. & D. E. Schindler, 1996. Effects of aquatic insect predators on zooplankton in fishless ponds. Hydrobiologia 324: 141–147.CrossRefGoogle Scholar
  17. Hutchinson, G. E., 1961. The paradox of the plankton. The American Naturalist 95: 137–145.CrossRefGoogle Scholar
  18. Kerfoot, W. C. & A. Sih (eds), 1987. Predation: Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover, N.H.Google Scholar
  19. Kolasa, J., 2001. Flatworms: Turbellaria and Nemertea. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates, 2nd ed. Academic Press, San Diego: 155–180.CrossRefGoogle Scholar
  20. Krebs, C. J., 1985. Ecology; The Experimental Analysis of Distribution and Abundance, 3rd ed. Harper & Row, New York.Google Scholar
  21. Lass, S. & P. Spaak, 2003. Chemically induced anti-predator defences in plankton: a review. Hydrobiologia 491: 221–239.CrossRefGoogle Scholar
  22. Maly, M. J., S. Shoenholtz & M. T. Arts, 1980. The influence of flatworm predation on zooplankton inhabiting small ponds. Hydrobiologia 76: 233–240.CrossRefGoogle Scholar
  23. Nandini, S. & S. S. S. Sarma, 2002. Competition between Moina macrocopa and Ceriodaphnia dubia: A life table demography study. International Review of Hydrobiology 87: 85–95.CrossRefGoogle Scholar
  24. Nandini, S. & S. S. S. Sarma, 2005. Life history characteristics of Asplanchnopus multiceps (Rotifera) fed rotifer and cladoceran prey. Hydrobiologia 546: 491–501.CrossRefGoogle Scholar
  25. Nandini, S., S. S. S. Sarma & H. J. Dumont, 2011. Predatory and toxic effects of the turbellerian (Stenostomum cf. leucops) on the population dynamics of Euchlanis dilatata, Plationus patulus (Rotifera) and Moina macrocopa (Cladocera). Hydrobiologia 662: 171–177.CrossRefGoogle Scholar
  26. Noreña, C., C. Damborenea & F. Brusa, 2005. A taxonomic revision of South American species of the genus Stenostomum O. Schmidt (Platyhelminthes: Catenulida) based on morphological characters. Zoological Journal of the Linnean Society 144: 37–58.CrossRefGoogle Scholar
  27. Ritson-Williams, R., M. Yotsu-Yamashita & V. J. Paul, 2006. Ecological functions of tetrodotoxin in a deadly polyclad flatworm. Proceedings of the National Academy of Science 103: 3176–3179.CrossRefGoogle Scholar
  28. Rocha, O., T. Matsumura-Tundisi, J. G. Tundisi & C. F. Fonseca, 1990. Predation on and by pelagic Turbellaria in some lakes in Brasil. Hydrobiologia 198: 91–101.CrossRefGoogle Scholar
  29. Sarma, S. S. S., S. Nandini & R. D. Gulati, 2005. Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiologia 542: 315–333.CrossRefGoogle Scholar
  30. Semenchenko, V. P., V. I. Razlutskij, I. Y. Feniova & D. N. Aibulatov, 2007. Biotic relations affecting species structure in zooplankton communities. Hydrobiologia 579: 219–231.CrossRefGoogle Scholar
  31. Stibor, H., 1992. Predator induced life history shifts in a freshwater cladoceran. Oecologia 92: 162–165.CrossRefGoogle Scholar
  32. Tollrian, R. & C. D. Harvell (eds), 1998. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton, NJ.Google Scholar
  33. Trochine, C., E. G. Balseiro & B. E. Modenutti, 2008. Zooplankton of fishless ponds of northern Patagonia: insights into predation effects of Mesostoma ehrenbergii. International Review of Hydrobiology 93: 312–327.CrossRefGoogle Scholar
  34. Urban, M. C., 2007. The growth predation risk trade-off under a growing gape-limited predation threat. Ecology 88: 2587–2597.PubMedCrossRefGoogle Scholar
  35. Wallace, R. L. & T. W. Snell, 1991. Rotifera. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates, 2nd ed. Academic Press, San Diego: 195–254.Google Scholar
  36. Wang, T., L. Xiao, Q. Lin, B. P. Han & H. J. Dumont, 2011. Pelagic flatworm predation on daphniids in a subtropical reservoir: different effects on Daphnia galeata and on Ceriodaphnia quadrangula. Hydrobiologia 658: 139–146.CrossRefGoogle Scholar
  37. Weber, C. I., 1993. Methods for measuring the acute toxicity of effluents and receiving waters to freshwater and marine organisms. 4th ed. United States Environmental Protection Agency, Cincinnati, Ohio, EPA/600/4-90/027F.Google Scholar
  38. Williamson, C. E. & J. W. Reid, 2001. Copepoda. In Thorp, J. H. & A. P. Covich (eds), Ecology and Classification of North American Freshwater Invertebrates, 2nd ed. Academic Press, San Diego: 915–954.CrossRefGoogle Scholar
  39. Wrona, F. J. & H. Koopowitz, 1998. Behavior of the rhabdocoel flatworm Mesostoma ehrenbergii in prey capture and feeding. Hydrobiologia 383: 35–40.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  1. 1.Laboratorio de Zoología Acuática, División de investigación y Posgrado, Edificio UMFUniversidad Nacional Autónoma de MéxicoTlalnepantlaMexico

Personalised recommendations