Skip to main content
Log in

Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

During the past decade, basic hydrological conditions of a floodplain lake in the middle Danube section have been altered with long-lasting extremely high flooding. The objective of the paper is to show the effectiveness of the functional approach to explain phytoplankton changes associated with hydrological events. Intensity and duration of flooding were qualified as the primary cause for the changes of functional groups. Flooding phase was characterised by diatoms (B, C, D, P, T B ) tolerant to water column mixing. Due to the dilution and washout effect their biomass was low during the long-lasting flooding despite their input from the river. Co-occurrence of coccoid green algae (X1, J, F) was associated with turbid and mixed waters. High-nutrient concentrations and water column stability during the long-term dry conditions led to the dominance and high biomass of cyanobacteria. Low-nitrogen H1 group was particularly sensitive to stress caused by flooding, while filamentous N2-fixing (S N ) and non N2-fixing species (S1) showed tolerance to short-term flooding. The development of euglenoids and dinoflagellates (W1, W2, L O ) was also associated with dry conditions and seasonal changes in autumn. The functional classification allows representing of the hydrological phases which characterise the phytoplankton succession in highly disturbed river-floodplain systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abonyi, A., M. Leitão, A. M. Lançon & J. Padisák, 2012. Phytoplankton functional groups as indicators of human impacts along the River Loire (France). Hydrobiologia 698: 233–249.

    Article  Google Scholar 

  • Anagnostidis, K. & J. Komárek, 1985. Modern approach to the classification system of cyanophytes. 1. Introduction. Archiv für Hydrobiologie, Supplement 71(1/2): 291–302.

  • Anagnostidis, K. & J. Komárek, 1988. Modern approach to the classification system of cyanophytes. 3. Oscillatoriales. Archiv für Hydrobiologie, Supplement 80(1/4): 327–472.

  • APHA (American Public Health Association), 1992. Standard Methods for the Examination of Water and Wastewater. American Public Health Association, Washington, DC.

  • Becker, V., L. de Souza Cardoso, V. Lúcia & M. Huszar, 2009. Diel variation of phytoplankton functional groups in a subtropical reservoir in southern Brazil during an autumnal stratification period. Aquatic Ecology 43: 285–293.

    Article  Google Scholar 

  • Borges, P. A. F., S. Train & L. C. Rodrigues, 2008. Spatial and temporal variation of phytoplankton in two subtropical Brazilian reservoirs. Hydrobiologia 607: 63–74.

    Article  Google Scholar 

  • Borics, G., B. Tóthmérész, B. A. Lukács & G. Várbíró, 2012. Functional groups of phytoplankton shaping diversity of shallow lake ecosystems. Hydrobiologia 698: 251–262.

    Article  Google Scholar 

  • Bovo-Scomparin, V. M. & S. Train, 2008. Long-term variability of the phytoplankton community in an isolated floodplain lake of the Ivinhema River State Park, Brazil. Hydrobiologia 610: 331–344.

    Article  Google Scholar 

  • Buijse, A. D., H. Coops, M. Staras, L. H. Jans, G. J. van Geest, R. E. Grift, B. W. Ibelings, W. Oosterberg & F. C. J. M. Roozen, 2002. Restoration strategies for river floodplains along large lowland rivers in Europe. Freshwater Biology 47: 889–907.

    Article  Google Scholar 

  • Clarke, K. R. & R. M. Warwick, 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, 2nd ed. PRIMER-E, Plymouth.

    Google Scholar 

  • Costa, L. S., V. L. M. Huszar & A. R. Ovalle, 2009. Phytoplankton functional groups in a tropical estuary: hydrological control and nutrient limitation. Estuaries and Coasts 32: 508–521.

    Article  CAS  Google Scholar 

  • Crossetti, L. O. & C. E. M. Bicudo, 2008. Adaptations in phytoplankton life strategies to imposed change in a shallow urban tropical eutrophic reservoir, Garcąs Reservoir, over 8 years. Hydrobiologia 614: 91–105.

    Article  Google Scholar 

  • Devercelli, M., 2006. Phytoplankton of the Middle Paraná River during an anomalous hydrological period: a morphological and functional approach. Hydrobiologia 563: 465–478.

    Article  Google Scholar 

  • Erwin, K. L., 2009. Wetlands and global climate change: the role of wetland restoration in a changing world. Wetlands Ecology and Management 17: 71–84.

    Article  Google Scholar 

  • García de Emiliani, M. O., 1993. Seasonal succession of phytoplankton in a lake of the Paraná River floodplain, Argentina. Hydrobiologia 264: 101–114.

    Article  Google Scholar 

  • Grigorszky, I., G. Borics, J. Padisák, B. Tótmérész, G. Vasas, S. Nagy & G. Borbély, 2003. Factors controlling the occurrence of Dinophyta species in Hungary. Hydrobiologia 506–509: 203–207.

    Article  Google Scholar 

  • Hindák, F., Z. Cyrus, P. Marvan, P. Javornický, J. Komárek, H. Ettl, K. Rosa, A. Sládečková, J. Popovský, M. Punčochářová & O. Lhotský, 1978. Slatkovodne riasy. Slovenske pedagogicke nakladelstvo, Bratislava.

  • Hustedt, F., 1976. Bacillariophyta. Otto Koeltz Science Publishers, Koenigstein.

    Google Scholar 

  • Huszar, V., C. Kruk & N. Caraco, 2003. Steady state of phytoplankton assemblage of phytoplankton in four temperate lakes (NE USA). Hydrobiologia 502: 97–109.

    Article  Google Scholar 

  • IPCC (The Intergovernmental Panel on Climate Change), 2008. Chapter 3 – Linking climate change and water resources: impacts and responses, Climate change and Water: Technical Paper VI. Cambridge University Press, Cambridge.

  • Isvánovics, V., H. M. Shafik, M. Présing & S. Juhos, 2000. Growth and phosphate uptake kinetics of the cyanobacterium, Cylindrospermopsis raciborskii (Cyanophyceae) in throughflow cultures. Freshwater Biology 43: 257–275.

    Article  Google Scholar 

  • Izaguirre, I., L. Allende, R. Escaray, J. Bustingorry, G. Pérez & G. Tell, 2012. Comparison of morpho-functional phytoplankton classifications in human-impacted shallow lakes with different stable states. Hydrobiologia 698: 203–216.

    Article  CAS  Google Scholar 

  • Janse, J. H., L. N. De Senerpont Domis, M. Scheffer, L. Lijklema, L. V. Liere, M. Klinge & W. M. Mooijb, 2008. Critical phosphorus loading of different types of shallow lakes and the consequences for management estimated with the ecosystem model PC Lake. Limnologica 38: 203–219.

    Article  CAS  Google Scholar 

  • Javornický, P. & J. Komárková, 1973. The changes in several parameters of plankton primary productivity in Slapy Reservoir 1960–1967, their mutual correlations and correlations with the main ecological factors. In Hrbáček, J. & M. Straškraba (eds), Hydrobiological Studies. Academia, Prague: 155–211.

    Google Scholar 

  • Jeppesen, E., M. Søndergaard, M. Meerhoff, T. L. Lauridsen & J. P. Jensen, 2007. Shallow lake restoration by nutrient loading reduction – some recent findings and challenges ahead. Hydrobiologia 584: 239–252.

    Article  CAS  Google Scholar 

  • Junk, W. J., P. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river floodplain system. Canadian Special Publication of Fisheries and Aquatic Sciences 106: 110–127.

    Google Scholar 

  • Köhler, J. & S. Hoeg, 2000. Phytoplankton selection in a river-lake system during two decades of changing nutrient supply. Hydrobiologia 424: 13–24.

    Article  Google Scholar 

  • Komárek, J. & K. Anagnostidis, 1989. Modern approach to the classification system of cyanophytes. 4. Nostocales. Algolological Studies 56: 247–345.

    Google Scholar 

  • Komárková, J., 1989. Primárni produkce ř as ve slatkovodních ekosysteméch. In Dykyová, D. (ed), Metody studia ecosystémů. Academia Praha, Praha: 330–347.

    Google Scholar 

  • Kruk, C., V. L. M. Huszar, E. T. H. M. Peeters, S. Bonilla, L. Costa, M. Lürling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.

    Article  Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using CANOCO. Cambridge University Press, New York.

    Google Scholar 

  • Lindenschmidt, K.-E. & I. Chorus, 1998. The effect of water column mixing on phytoplankton succession, diversity and similarity. Journal of Plankton Research 20: 1927–1951.

    Article  Google Scholar 

  • Lopes, M. R. M., C. E. M. Bicudo & M. C. Ferragut, 2005. Short term spatial and temporal variation of phytoplankton in a shallow tropical oligotrophic reservoir, southeast Brazil. Hydrobiologia 542: 235–247.

    Article  Google Scholar 

  • Meerhoff, M., J. M. Clemente, F. Teixeira de Mello, C. Iglesias, A. R. Pedersen & E. Jeppesen, 2007. Can warm climate-related structure of littoral predator assemblies weaken the clear water state in shallow lakes? Global Change Biology 13: 1888–1897.

    Article  Google Scholar 

  • Meffert, M. E., R. Oberhäuser & J. Overbeck, 1981. Morphology and Taxonomy of Oscillatoria redekei (Cyanophyta). British Phycological Journal 16: 107–114.

    Article  Google Scholar 

  • Melo, S. & V. L. M. Huszar, 2000. Phytoplankton in an Amazonian floodplain lake (Lago Batata, Brasil): diel variation and species strategies. Journal of Plankton Research 22: 63–76.

    Article  Google Scholar 

  • Mieleitner, J., M. Borsuk, H. R. Bürgi & P. Reichert, 2008. Identifying functional groups of phytoplankton using data from three lakes of different trophic state. Aquatic Sciences 70: 30–46.

    Article  Google Scholar 

  • Mihaljević, M. & F. Stević, 2011. Cyanobacterial blooms in a temperate river-floodplain ecosystem: the importance of hydrological extremes. Aquatic Ecology 45: 335–349.

    Article  Google Scholar 

  • Mihaljević, M., D. Getz, Z. Tadić, B. Živanović, D. Gucunski, J. Topić, I. Kalinović & J. Mikuska, 1999. Kopački Rit – Research Survey and Bibliography. Croatian Academy of Arts and Sciences, Zagreb.

    Google Scholar 

  • Mihaljević, M., F. Stević, J. Horvatić & B. Hackenberger Kutuzović, 2009. Dual impact of the flood pulses on the phytoplankton assemblages in a Danubian floodplain lake (Kopački Rit Nature Park, Croatia). Hydrobiologia 618: 77–88.

    Article  Google Scholar 

  • Mihaljević, M., D. Špoljarić, F. Stević, V. Cvijanović & B. Hackenberger Kutuzović, 2010. The influence of extreme floods from the River Danube in 2006 on phytoplankton communities in a floodplain lake: Shift to a clear state. Limnologica 40: 260–268.

    Article  Google Scholar 

  • Moustaka-Gouni, M., E. Vardaka & E. Tryfon, 2007. Phytoplankton species succession in a shallow Mediterranean lake (L. Kastoria, Greece): steady-state dominance of Limnothrix redekei, Microcystis aeruginosa and Cylindrospermopsis raciborskii. Hydrobiologia 575: 129–140.

    Article  Google Scholar 

  • Nabout, J. C., I. S. Noguera & L. G. Oliviera, 2006. Phytoplankton community of floodplain lakes of the Araguaia River, Brazil, in the rainy and dry seasons. Journal of Plankton Research 28: 181–193.

    Article  Google Scholar 

  • Naselli-Flores, L. & R. Barone, 2012. Phytoplankton dynamics in permanent and temporary Mediterranean waters: is the game hard to play because of hydrological disturbance? Hydrobiologia 698: 147–159.

    Article  CAS  Google Scholar 

  • Nixdorf, B., U. Mischke & J. Rücker, 2003. Phytoplankton assemblages and steady state in deep and shallow eutrophic lakes – an approach to differentiate the habitat properties of Oscillatoriales. Hydrobiologia 502: 111–121.

    Article  Google Scholar 

  • O’Farrell, I., I. Izaguirre, G. Chaparro, R. Sinistro, H. Pizarro, P. Rodríguez, P. de Tezanos Pinto, R. Lombardo & G. Tell, 2011. Water level as the main driver of the alternation between a free-floating plant and a phytoplankton dominated state: a long-term study in a floodplain lake. Aquatic Sciences 73: 275–287.

    Article  Google Scholar 

  • Padisák, J., G. Borics, G. Fehér, I. Grigorszky, I. Oldal, A. Schmidt & Z. Zámbóné-Doma, 2003. Dominant species, functional assemblages and frequency of equilibrium phases in late summer phytoplankton assemblages in Hungarian small shallow lakes. Hydrobiologia 502: 157–168.

    Article  Google Scholar 

  • Padisák, J., L. O. Crossetti & L. Naselli-Flores, 2009. Use and misuse in the application of the phytoplankton functional classification: a critical review with updates. Hydrobiologia 621: 1–19.

    Article  Google Scholar 

  • Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Sandgren, C. D. (ed), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 388–433.

    Google Scholar 

  • Reynolds, C. S., 1994. The role of fluid motion in the dynamics of phytoplankton in lakes and rivers. In Giller, P. S., A. G. Hilldrew & D. J. Rafaelli (eds), Aquatic Ecology: Scale Pattern and Process. Blackwell Scientific Publishers, Oxford: 649.

    Google Scholar 

  • Reynolds, C. S., 1997. Vegetation Processes in the Pelagic: A Model for Ecosystem Theory. Ecology Institutem Oldenburg/Luhe.

  • Reynolds, C. S., 2006. The Ecology of Phytoplankton. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores & S. Melo, 2002. Towards a functional classification of the freshwater phytoplankton. Journal of Plankton Research 24: 417–428.

    Article  Google Scholar 

  • Rigosi, A. & F. J. Rueda, 2012. Hydraulic control of short-term successional changes in the phytoplankton assemblage in stratified reservoirs. Ecological Engineering 44: 216–226.

    Article  Google Scholar 

  • Rojo, C. & M. Alvarez-Cobelas, 2003. Are there steady-state phytoplankton assemblage in the field? Hydrobiologia 502: 3–12.

    Article  Google Scholar 

  • Rott, E., 1981. Some results from phytoplankton counting intercalibration. Swiss Journal of Hydrology 43: 34–62.

    Google Scholar 

  • Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.

    Article  Google Scholar 

  • Salmaso, N., L. Naselli-Flores & J. Padisák, 2012. Impairing the largest and most productive forest on our planet: how do human activities impact phytoplankton? Hydrobiologia 698: 375–384.

    Article  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    Article  CAS  Google Scholar 

  • Scheffer, M., S. H. Hosper, M. L. Meijer, B. Moss & E. Jeppesen, 1993. Alternative equilibria in shallow lakes. Trends in Ecology & Evolution 8: 275–279.

    Article  CAS  Google Scholar 

  • Schwarz, U., 2005. Landschaftsökologische Charakterisierung des Kopački Rit unter besonderer Berücksichtigung von Flusslandschaftsformen sowie deren Genese und Typologie. Dissertation, University of Wien.

  • Sommer, U., 1981. The role of r- and K-selection in the succession of phytoplankton in Lake Constance. Acta Œcologica 2: 327–342.

    Google Scholar 

  • Stanković, I., T. Vlahović, M. Gligora Udovič, G. Várbíró & G. Borics, 2012. Phytoplankton functional and morpho-functional approach in large floodplain rivers. Hydrobiologia 698: 217–231.

    Article  Google Scholar 

  • Tockner, K., M. Pusch, D. Borchardt & M. S. Lorang, 2010. Multiple stressors in coupled river–floodplain ecosystems. Freshwater Biology 55: 135–151.

    Article  Google Scholar 

  • Tolotti, M., H. Thies, M. Cantonati, C. M. E. Hansen & B. Thaler, 2003. Flagellate algae (Chrysophyceae, Dinophyceae, Cryptophyceae) in 48 high mountain lakes of the northern and southern slope of the eastern Alps: Biodiversity, distribution of taxa, and their driving variables. Hydrobiologia 502: 331–348.

    Article  Google Scholar 

  • Tolotti, M., F. Corradini, A. Boscaini & D. Calliari, 2007. Weather-driven ecology of planktonic diatoms in Lake Tovel (Trentino, Italy). Hydrobiologia 578: 147–156.

    Article  Google Scholar 

  • Townsend, S. A., 2006. Hydraulic phases, persistant stratification, and phytoplankton in a tropical floodplain lake (Mary River, northern Australia). Hydrobiologia 556: 163–179.

    Article  CAS  Google Scholar 

  • Train, S. & L. C. Rodrigues, 1998. Temporal fluctuations of the phytoplankton community of the Baía River, in the upper Paraná River floodplain, Mato Grosso do Sul, Brazil. Hydrobiologia 361: 125–134.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Van Geest, G. J., H. Coops, M. Scheffer & E. H. van Nes, 2007. Long transients near the ghost of a stable state in eutrophic shallow lakes with fluctuating water levels. Ecosystems 10: 36–46.

    Article  Google Scholar 

  • Várbíró, G., É. Ács, G. Borics, K. Érces, G. Fehér, I. Grigorszky, T. Japport, G. Kocsis, E. Krasznai, K. Nagy, Zs. Nagy-László, Zs. Pilinszky & K.-T. Kiss, 2007. Use of self organizing maps (SOM) for characterization of riverine phytoplankton associations in Hungary. Archiv Für Hydrobiologie, Supplement 161: 383–394.

  • Verasztó, Cs., K. T. Kiss, Cs. Sipkay, L. Gimesi, Cs. Vadadi-Fülöp, D. Türei & L. Hufnagel, 2010. Long-term dynamic patterns and diversity of phytoplankton communities in a large eutrophic river (the case of River Danube, Hungary). Applied Ecology and Environmental Research 8: 329–349.

  • Vidaković, J. & I. Bogut, 2007. Periphyton nematode assemblages in association with Myriophyllum spicatum L. in Lake Sakadaš, Croatia. Russian Journal of Nematology 15: 79–88.

    Google Scholar 

  • Wang, L., Y. Xu, L. Kong, L. Tan & M. Zhang, 2011. Weekly dynamics of phytoplankton functional groups under high water level fluctuations in a subtropical reservoir-bay. Aquatic Ecology 45: 197–212.

    Article  Google Scholar 

  • Wantzen, K., W. Junk & K. Rothhaupt, 2008. An extension of the flood pulse concept (FPC) for lakes. Hydrobiologia 613: 151–170.

    Article  Google Scholar 

  • Watson, S. B., T. Satchwill, E. Dixon & E. McCauley, 2001. Under-ice blooms and source-water odour in a nutrient-poor reservoir: biological, ecological and applied perspectives. Freshwater Biology 46: 1–15.

    Article  CAS  Google Scholar 

  • Weithoff, G., 2003. The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton – a new understanding of phytoplankton ecology? Freshwater Biology 48: 1669–1675.

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to V. Cvijanović, G. Palijan, A. Galir Balkić, D. Čerba and M. Špoljarević for field and laboratory assistance. This study was supported by the Croatian Ministry of Science, Education and Sports, research project No. 285-0000000-2674. We also wish to thank the project’s lead researcher Prof. J. Vidaković for the support. We thank the Handling Editor and four anonymous reviewers for their constructive comments and helpful suggestions which substantially improved this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melita Mihaljević.

Additional information

Handling editor: Judit Padisak

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stević, F., Mihaljević, M. & Špoljarić, D. Changes of phytoplankton functional groups in a floodplain lake associated with hydrological perturbations. Hydrobiologia 709, 143–158 (2013). https://doi.org/10.1007/s10750-013-1444-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-013-1444-6

Keywords

Navigation