, Volume 706, Issue 1, pp 11–33 | Cite as

Every species is good in its season: Do the shifts in the annual temperature dynamics affect the phenology of the zooplankton species in the White Sea?

  • Nikolay Usov
  • Inna Kutcheva
  • Igor Primakov
  • Daria Martynova


We hypothesize that shifts in the annual pattern of the environmental parameters may affect the phenology of the zooplankton especially in temperate and polar areas. Five species (cold-water: Calanus glacialis, warm-water: Centropages hamatus, Temora longicornis, Acartia longiremis, and Evadne nordmanni) were tested with regard to the annual pattern of the water temperature using the dataset of 50-year-long monitoring in the White Sea (1961–2010). The hydrological summer duration increased by 20 days during the last 50 years, as it has been tracked by an earlier warming up of 0–10-m water layer in spring. Calanus glacialis responded to these changes by the appearance of CI copepodites earlier in the season. We suggest that the earlier start and longer period of ice melt may cause a longer phytoplankton bloom and thus may promote better trophic conditions during the period of Calanus reproduction and its early development. In contrast to cold-water C. glacialis, the phenology and abundance of warm-water copepods have not changed significantly. Both the timings of autumn cooling and average summer temperature remained relatively stable since the beginning of observations resulting in steady conditions during the reproductive period of warm-water species. Prolongation of summer had no effect on their reproduction.


White Sea Sub-Arctic Zooplankton Phenology Long-term changes Calanus glacialis Acartia Centropages hamatus Temora longicornis Evadne nordmanni 



We would like to express our gratitude to all the people who took part in monitoring since 1957, especially to Dr. Regina V. Prygunkova, who kept this program for almost 30 years and summarized the plankton data from 1960 to 1995. We are also grateful to oceanologist Alexey I. Babkov (worked during 1973–1995), who summarized the hydrological data of monitoring. Our thanks go to S.S. Ivanova (worked during 1957–1958), S.S. Burlakova (1957–1982), R.V. Pyaskovsky (1957–1960), Yu.M. Savos’kin (1960–1971), M.Ju. Sorokin (1996–1998), M.A. Zubakha (1999–2001), and to the captains and crews of the research vessels. This research has been supported since 2002 by the ongoing Basic Research Program of the Russian Academy of Sciences “Monitoring of biodiversity and detection of main trends in dynamics of the White Sea ecosystems in the changing climate,” and “Biota of the White Sea: adaptations to environmental conditions at different structural levels.” We are grateful to Katherine Curran (Centre for Sustainable Heritage, London, UK) and Ruth Alheit (Alfred-Wegener Institute for Polar and Marine Research, Bremerhaven, Germany) for their invaluable help in checking English language.


  1. Babkov, A. I., 1985. About the principles of determination of hydrological seasons (by the example of Chupa inlet, the White Sea). Explorations of the Fauna of the Seas 31(39): 84–88. (in Russian).Google Scholar
  2. Babkov A. I. & R. V. Prygunkova, 1974. Anomalies of zooplankton seasonal development and hydrological conditions in Chupa inlet of the White Sea. Proceedings of Conference: Hydrobiology and Biogeography of Shelves of Cold and Temperate Waters of the World Ocean, Leningrad: 99–100 (in Russian).Google Scholar
  3. Beaugrand, G. & P. Reid, 2003. Long-term changes in phytoplankton, zooplankton and salmon related to climate. Global Change Biology 9: 801–817.CrossRefGoogle Scholar
  4. Berger V. & K. Kosobokova, 2001. Zooplankton. In White Sea. Ecology and Environment. Derzavets Publisher, St.-Petersburg, Tromsø: 31–38.Google Scholar
  5. Berger V. & A. Naumov, 2001. General features. In: White Sea. Ecology and Environment. Derzavets Publisher, St.-Petersburg, Tromsø: 9–20.Google Scholar
  6. Berger, V., A. Naumov, M. Zubaha, N. Usov, I. Smolyar, R. Tatusko & S. Levitus, 2003. 36-Year Time series (1963–1998) of Zooplankton, Temperature and Salinity in the White Sea, S-Petersburg, Washington: 362 pp.Google Scholar
  7. Blachowiak-Samolyk, K., J. E. Søreide, S. Kwasniewski, A. Sundfjord, H. Hop, S. Falk-Petersen & E. N. Hegseth, 2008. Hydrodynamic control of mesozooplankton abundance and biomass in Svalbard waters (79–81°N). Deep Sea Research II 55: 2210–2224.CrossRefGoogle Scholar
  8. Boitsov V. D., 1994. Seasonal variability of main hydrometeorological parameters. In: Matishov G.G. (ed.) Patterns of forming of resources in near shore zone of the Barents Sea and recommendations on their commercial exploitation. Apatity: 9–16. (in Russian).Google Scholar
  9. Burthe, S., F. Daunt, A. Butler, D. A. Elston, M. Frederiksen, D. Johns, M. Newell, S. J. Thackeray & S. Wanless, 2012. Phenological trends and trophic mismatch across multiple levels of a North Sea pelagic food web. Marine Ecology Progress Series 454: 119–133.CrossRefGoogle Scholar
  10. Comiso, J. C., C. L. Parkinson, R. Gersten & L. Stock, 2008. Accelerated decline in the Arctic sea ice cover. Geophysical Research Letters 35: L01703.CrossRefGoogle Scholar
  11. Corkett, C. J., I. A. McLaren & J. M. Sevigny, 1986. The rearing of the marine calanoid copepods Calanus finmarchicus (Gunnerus), C. glacialis Jaschnov and C. hyperboreus Kroyer with comment on the equiproportional rule. In Schriever, G., H. K. Schminke & C. T. Shih (eds), Syllogeus 58. Proceedings of 2nd International Conference on Copepoda, 13–17 August, Ottawa. The National Museum of Canada, Ottawa, 539–546.Google Scholar
  12. Daase, M., J. Søreide & D. Martynova, 2011. Effects of food quality and food concentration on naupliar development of Calanus glacialis at sub-zero temperatures. Marine Ecology Progress Series 429: 111–124.CrossRefGoogle Scholar
  13. Dutz, J., V. Mohrholz & J. E. E. van Beusekom, 2010. Life cycle and spring phenology of Temora longicornis in the Baltic Sea. Marine Ecology Progress Series 406: 223–238.CrossRefGoogle Scholar
  14. Edwards, M. & A. J. Richardson, 2004. Impact of climate change on marine pelagic phenology and trophic mismatch. Nature 430: 881–884.PubMedCrossRefGoogle Scholar
  15. Edwards, M., G. Beaugrand, P. C. Reid, A. A. Rowden & M. B. Jones, 2002. Ocean climate anomalies and the ecology of the North Sea. Marine Ecology Progress Series 239: 1–10.CrossRefGoogle Scholar
  16. Edwards, M., G. Beaugrand, A. W. G. John, D. G. Johns, P. Licandro, A. McQuatters-Gollop & P. C. Reid, 2009. Ecological Status Report: results from the CPR survey 2007/2008. SAHFOS Technical Report, 6: 1–12.Google Scholar
  17. Engel, M., 2005. Calanoid copepod resting eggs – a safeguard against adverse environmental conditions in the German Bight and the Kara Sea? Berichte zur Polar- umd Meeresforschung 508: 1–108.Google Scholar
  18. Fedorov, V. D., L. V. Ilyash, T. I. Kol’tsova, K. K. Sarukhan-Bek, N. A. Smirnov & V. V. Fedorov, 1995. Ecological investigations of phytoplankton. In The White Sea. Biological Resources and Problems of Their Rational Exploitation. Series: Explorations of the Fauna of the Seas 42(50): 79–92 (in Russian).Google Scholar
  19. Gieskes, W. W. C., 1971. Ecology of the Cladocera of the North Atlantic and the North Sea, 1960–1967. Netherland Journal of Sea Research 5: 342–376.CrossRefGoogle Scholar
  20. Harris, R. P., P. H. Wiebe, J. Lenz, H.-R. Skjoldal & M. Huntley (eds), 2000. ICES Zooplankton Methodology Manual. Academic Press, New York.Google Scholar
  21. Hays, G. C., M. R. Carr & A. H. Taylor, 1993. The relationship between Gulf Stream position and copepod abundance derived from the Continuous Plankton Recorder Survey: separating biological signal from sampling noise. Journal of Plankton Research 15: 1359–1373.CrossRefGoogle Scholar
  22. Hays, G. C., A. J. Richardson & C. Robinson, 2005. Climate change and marine plankton. Trends in Ecology and Evolution 20: 337–344.PubMedCrossRefGoogle Scholar
  23. Hegseth, E. N. & A. Sundfjord, 2008. Intrusion and blooming of Atlantic phytoplankton species in the high Arctic. Journal of Marine Systems 74: 108–119.CrossRefGoogle Scholar
  24. Hirche, H. J. & G. Kattner, 1993. Egg-production and lipid-content of Calanus glacialis in spring: indication of a food-dependent and food-independent reproductive mode. Marine Biology 117: 615–622.CrossRefGoogle Scholar
  25. International Oceanographic Tables. UNESCO Technical Papers in Marine Science, 1981.Google Scholar
  26. Ivanova, S. S., 1963. Zooplankton of Chupa Inlet. In Materials of Comprehensive Investigations of the White Sea, Vol. 2. AS USSR Publishers, Moscow-Leningrad: 17–31 (in Russian).Google Scholar
  27. Ji, R., M. Edwards, D. L. Mackas, J. A. Runge & A. C. Thomas, 2010. Marine plankton phenology and life history in a changing climate: current research and future directions. Journal of Plankton Research 32: 1355–1368.PubMedCrossRefGoogle Scholar
  28. Kahru, M., V. Brotas, M. Manzano-Sarabia & B. G. Mitchell, 2011. Are phytoplankton blooms occurring earlier in the Arctic? Global Change Biology 17: 1733–1739.CrossRefGoogle Scholar
  29. Katajisto, T., 2006. Benthic resting eggs in the life cycles of calanoid copepods in the northern Baltic Sea. W. & A. de Nottbeck Foundation Science Report 29: 1–46.Google Scholar
  30. Kosobokova, K. N., 1999. The reproductive cycle and life history of the Arctic copepod Calanus glacialis in the White Sea. Polar Biology 22: 254–263.CrossRefGoogle Scholar
  31. Krell, A., C. Ummenhofer, G. Kattner, A. Naumov, D. Evans, G. S. Dieckmann & D. N. Thomas, 2003. The biology and chemistry of land fast ice in the White Sea, Russia – a comparison of winter and spring conditions. Polar Biology 26: 707–719.CrossRefGoogle Scholar
  32. Kutcheva, I. P. & I. M. Primakov, 2001. Comparative analysis of the composition of zooplankton community sampled by the nets with different mesh size (0.08 and 0.168 mm). Vestnik Sankt-Peterburgskogo Universiteta. Series 3 – Biology 4: 76–79. (in Russian).Google Scholar
  33. Lance, J., 1962. Effects of water of reduced salinity on the vertical migration of zooplankton. Journal of the Marine Biological Association of the United Kingdom 42: 131–154.CrossRefGoogle Scholar
  34. Leu, E., J. E. Søreide, D. O. Hessen, S. Falk-Petersen & J. Berge, 2010. Consequences of changing sea-ice cover for primary and secondary producers in the European Arctic shelf seas: Timing, quantity, and quality. Progress in Oceanography 90: 18–32.CrossRefGoogle Scholar
  35. Libes, S. M., 2009. Introduction to Marine Biogeochemistry. Academic Press, New York.Google Scholar
  36. Mackas, D. L. & G. Beaugrand, 2010. Comparisons of zooplankton time series. Journal of Marine Systems 79: 286–304.CrossRefGoogle Scholar
  37. Mackas, D. L., S. Batten & M. Trudel, 2007. Effects on zooplankton of a warmer ocean: recent evidence from the Northeast Pacific. Progress in Oceanography 75: 223–252.CrossRefGoogle Scholar
  38. Martynova, D. M., M. Graeve & U. V. Bathmann, 2009. Adaptation strategies of copepods (superfam.: Centropagoidea) in the White Sea (66°N). Polar Biology 32: 133–146.CrossRefGoogle Scholar
  39. Martynova, D. M., N. A. Kazus, U. V. Bathmann, M. Graeve & A. A. Sukhotin, 2011. Seasonal abundance and feeding patterns of copepods Temora longicornis, Centropages hamatus and Acartia spp. in the White Sea (66°N). Polar Biology 34: 1175–1195.CrossRefGoogle Scholar
  40. McLaren, I. A., J. M. Sevigny & C. J. Corkett, 1988. Body sizes, development rates, and genome sizes among Calanus species. Hydrobiologia 167–168: 275–284.CrossRefGoogle Scholar
  41. McNamara, J. M. & A. I. Houston, 2008. Optimal annual routines: behaviour in the context of physiology and ecology. Philosophical Transactions of the Royal Society. Biological Sciences 363: 301–319.PubMedCrossRefGoogle Scholar
  42. Mityaev, M. V., M. V. Gerasimova & E. I. Druzhkova, 2012. Vertical particle fluxes in the coastal areas of the Barents and White seas. Translated from Okeanologiya 52: 121–130; Oceanology 52: 112–121.Google Scholar
  43. Möllmann, C., G. Kornilovs, M. Fetter & F. W. Koster, 2005. Climate, zooplankton, and pelagic fish growth in the central Baltic Sea. ICES Journal of Marine Science 62: 1270–1280.CrossRefGoogle Scholar
  44. Mullin, J. B. & J. P. Riley, 1955. The calorimetric determination of silicate with special reference to sea and natural waters. Analytica Chimica Acta 12: 162–176.CrossRefGoogle Scholar
  45. Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.CrossRefGoogle Scholar
  46. Niehoff, B., S. Madsen, B. Hansen & T. Nielsen, 2002. Reproductive cycles of three dominant Calanus species in Disko Bay, West Greenland. Marine Biology 140: 567–576.CrossRefGoogle Scholar
  47. Pertzova, N. M., 1974. Life cycle and ecology of warm-water copepod Centropages hamatus in the White Sea. Zoologicheskii Zhurnal 53: 1013–1022. (in Russian).Google Scholar
  48. Pertzova, N. M. & K. N. Kosobokova, 2002. Year-to-year variations of biomass and distribution of zooplankton in Kandalaksha Bay of the White Sea. Okeanologiya 42: 240–248. (in Russian).Google Scholar
  49. Pertzova, N. M. & A. N. Pantyulin, 2005. Interrelationships between copepods (Copepoda, Calanoida) of the White and Barents Seas and mechanisms of the independence of the White Sea population. Zoologicheskii Zhurnal 85: 948–956. (in Russian).Google Scholar
  50. Peterson, B. J., R. M. Holmes, J. W. McClelland, C. J. Vorosmarty, R. B. Lammers, A. I. Shiklomanov, I. A. Shiklomanov & S. Rahmstorf, 2002. Increasing river discharge to the Arctic Ocean. Science 298: 2171–2173.PubMedCrossRefGoogle Scholar
  51. Primakov, I. M., 2001. Description of zooplankton community structure using multidimensional methods of analysis on the basis of material collected in the mouth part of Chupa Inlet in 1999. Vestnik Sankt-Peterburgskogo Universiteta. Series 3 – Biology 3: 18–25 (in Russian).Google Scholar
  52. Primakov I. M., 2004. Zooplankton community structure in the mouth part of Chupa Inlet: Experience of multidimensional analysis. Proceeding of the Biological Institute of Saint-Petersburg University 51 (Marine and freshwater ecosystems of the North Karelia): 138–152. (in Russian).Google Scholar
  53. Primakov, I. M., 2008. Distribution of planktonic organisms of tidal bays of the White Sea under the influence of hydrodynamic conditions. Proceedings of the Zoological institute of RAS 312(1–2): 135–144. (in Russian).Google Scholar
  54. Prygunkova, R. V., 1974. Some peculiarities of seasonal development of zooplankton in Chupa inlet of the White Sea. Explorations of the fauna of the seas 13(21): 4–55. (in Russian).Google Scholar
  55. Prygunkova, R. V., 1975. On periodical changes in the seasonal development of zooplankton in the White Sea. Proceedings of Conference “Shelf Biology”. Vladivostok: 140–141 (in Russian).Google Scholar
  56. Prygunkova, R. V., 1977. Zooplankton of Kandalaksha Bay in comparison with zooplankton at decade station D-1 in Chupa inlet (the White Sea). Explorations of the fauna of the seas 19(27): 100–108. (in Russian).Google Scholar
  57. Prygunkova, R. V., 1990. Zooplankton abundance dynamics in Kandalaksha Bay of the White Sea in connection with problem of yields of small Kandalaksha herring generations. Proceedings of Zoological Institute AS USSR 227: 54–77. (in Russian).Google Scholar
  58. Pyper, B. J. & R. M. Peterman, 1998. Comparison of methods to account for autocorrelation in correlation analyses of fish data. Canadian Journal of Fisheries and Aquatic Sciences 55: 2127–2140.CrossRefGoogle Scholar
  59. Quenouille, N. H., 1952. Associated Measurements. Butterworths, London.Google Scholar
  60. Richardson, A. J., 2008. In hot water: zooplankton and climate change. ICES Journal of Marine Science 65: 279–295.CrossRefGoogle Scholar
  61. Runge, J. A. & R. G. Ingram, 1988. Underice grazing by planktonic, Calanoid copepods in relation to a bloom of ice microalgae in southeastern Hudson Bay. Limnology and Oceanography 33: 280–286.CrossRefGoogle Scholar
  62. Sapozhnikov, V. V. (ed.), 1994. Complex Studies of the White Sea Ecosystem. VNIRO Publishers, Moscow. (in Russian).Google Scholar
  63. Savos’kin Yu. M., 1969. Basic features of hydrological-hydrochemical regime of Chupa Inlet of the White Sea. Report on hydrological studies in Chupa Inlet of the White Sea in 1957–1967. Zoological institute AS USSR (The White Sea Biological Station) (in Russian).Google Scholar
  64. Sokal, R. R. & F. J. Rohlf, 1995. Biometry. The Principles and Practice of Statistics in Biological Research, 3rd ed. W. H. Freeman, New-York.Google Scholar
  65. Søreide, J. E., E. Leu, J. Berge, M. Graeve & S. Falk-Petersen, 2010. Timing of blooms, algal food quality and Calanus glacialis reproduction and growth in a changing Arctic. Global Change Biology 16: 3154–3163.Google Scholar
  66. Strickland, J. D. H. & T. R. Parsons, 1972. A Practical Handbook of Seawater Analysis, 2nd edn, Bulletin 167. Fisheries Research Board of Canada, Ottawa.Google Scholar
  67. Thackeray, S. J., P. A. Henrys, I. D. Jones & H. Feuchtmayr, 2012. Eight decades of phenological change for a freshwater cladoceran: what are the consequences of our definition of seasonal timing? Freshwater Biology 57: 345–359.CrossRefGoogle Scholar
  68. Varpe, Ø., 2012. Fitness and phenology: annual routines and zooplankton adaptations to seasonal cycles. Journal of Plankton Research 34: 267–276.CrossRefGoogle Scholar
  69. Wassmann, P., C. M. Duarte, S. Agusti & M. K. Sejr, 2011. Footprints of climate change in the Arctic marine ecosystem. Global Change Biology 17: 1235–1249.CrossRefGoogle Scholar
  70. Wiltshire, K. H., A. Kraberg, I. Bartsch, M. Boersma, H. D. Franke, J. Freund, C. Gebuhr, G. Gerdts, K. Stockmann & A. Wichels, 2010. Helgoland roads, North Sea: 45 years of change. Estuaries and Coasts 33: 295–310.CrossRefGoogle Scholar
  71. Zhadin, V. I., 1960. Methods of Hydrobiological Investigation. “Vysshaya shkola” Publishers, Moscow. (in Russian).Google Scholar
  72. Zubakha, M. A. & N. V. Usov, 2004. Optimum temperatures for common zooplankton species in the White Sea. Russian Journal of Marine Biology 30: 293–297.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Nikolay Usov
    • 1
  • Inna Kutcheva
    • 1
  • Igor Primakov
    • 1
  • Daria Martynova
    • 1
  1. 1.White Sea Biological Station, Zoological InstituteRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations