Skip to main content

Advertisement

Log in

Cladocerans respond to differences in trophic state in deeper nutrient poor lakes from Southern Norway

  • CLADOCERA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

We investigated the role of trophic state in structuring the cladoceran assemblages in 35 relatively deep lakes of low nutrient levels in Southern Norway. The lakes cover gradients of altitude, latitude, longitude, area and total phosphorus concentration. The environmental control of the cladoceran assemblages was analyzed using canonical correspondence analysis. Total phosphorus was the most important variable in the minimal adequate model. Hence, the cladoceran assemblage changed with trophic state. Typical clear water species were displaced by indicators of eutrofication with increasing trophic levels. Littoral species constituted the majority of the species recorded. Littoral and pelagic species richness showed a unimodal relationship with trophic state. Along with the change in trophic state and shift in cladoceran assemblage, we observed an increase in the ratio of pelagic to littoral species as well as in the ratio of pelagic efficient bacterial feeders to total pelagic filter feeders. The study indicates that zooplankton could provide a valuable indicator of ecosystem’s structure and function in deeper nutrient poor lakes if included in water quality assessments according to the EU Water Framework Directive. Including sampling of the littoral zooplankton would improve diversity estimates and incorporate the response of the littoral zone to eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Barnett, A. & B. E. Beisner, 2007. Zooplankton biodiversity and lake trophic state: explanations invoking resource abundance and distribution. Ecology 88: 1675–1686.

    Article  PubMed  Google Scholar 

  • Barnett, A. J., K. Finlay & B. E. Beisner, 2007. Functional diversity of crustacean zooplankton communities: towards a trait-based classification. Freshwater Biology 52: 796–813.

    Article  Google Scholar 

  • Bern, L., 1990. Size-related discrimination of nutritive and inert particles by freshwater zooplankton. Journal of Plankton Research 12: 1059–1067.

    Article  Google Scholar 

  • Bern, L., 1994. Particle selection over a broad size range by crustacean zooplankton. Freshwater Biology 32: 105–112.

    Article  Google Scholar 

  • Berzins, B. & J. Bertilsson, 1989. On limnitic micro-crustaceans and trophic degree. Hydrobiologia 185: 95–100.

    Article  CAS  Google Scholar 

  • Berzins, B. & B. Pejler, 1989. Rotifer occurrence and trophic degree. Hydrobiologia 182: 171–180.

    Article  CAS  Google Scholar 

  • Bird, D. F. & J. Kalff, 1984. Empirical relationships between bacterial abundance and chlorophyll concentration in fresh and marine waters. Canadian Journal of Fisheries and Aquatic Sciences 41: 1015–1023.

    Article  Google Scholar 

  • Bjerring, R., E. Becares, S. Declerck, E. M. Gross, L. A. Hansson, T. Kairesalo, M. Nykanen, A. Halkiewicz, R. Kornijow, J. M. Conde-Porcuna, M. Seferlis, T. Noges, B. Moss, S. L. Amsinck, B. V. Odgaard & E. Jeppesen, 2009. Subfossil cladocera in relation to contemporary environmental variables in 54 Pan-European lakes. Freshwater Biology 54: 2401–2417.

    Article  CAS  Google Scholar 

  • Brendelberger, H. & W. Geller, 1985. Variability of filter structures in eight Daphnia species: mesh sizes and filtering areas. Journal of Plankton Research 7: 473–486.

    Article  Google Scholar 

  • Brodersen, K. P., M. C. Whiteside & C. Lindegaard, 1998. Reconstruction of trophic state in Danish lakes using subfossil chydorid (Cladocera) assemblages. Canadian Journal of Fisheries and Aquatic Sciences 55: 1093–1103.

    Article  Google Scholar 

  • Brooks, J. L. & S. I. Dodson, 1965. Predation, body size, and composition of plankton. Science 150: 28–35.

    Article  PubMed  CAS  Google Scholar 

  • Caroni, R. & K. Irvine, 2010. The potential of zooplankton communities for ecological assessment of lakes: redundant concept or political oversight? Biology and Environment-Proceedings of the Royal Irish Academy 110B: 35–53.

    Article  Google Scholar 

  • Certain, G., O. Skarpaas, J. W. Bjerke, E. Framstad, M. Lindholm, J. E. Nilsen, A. Norderhaug, E. Oug, H. C. Pedersen, A. K. Schartau, G. I. van der Meeren, I. Aslaksen, S. Engen, P. A. Garnasjordet, P. Kvaloy, M. Lillegard, N. G. Yoccoz & S. Nybo, 2011. The nature index: a general framework for synthesizing knowledge on the state of biodiversity. PLoS ONE 6: 14.

    Article  Google Scholar 

  • Chen, G. J., C. Dalton & D. Taylor, 2010. Cladocera as indicators of trophic state in Irish lakes. Journal of Paleolimnology 44: 465–481.

    Article  Google Scholar 

  • de Eyto, E., K. Irvine, F. Garcia-Criado, M. Gyllstrom, E. Jeppesen, R. Kornijow, M. R. Miracle, M. Nykanen, C. Bareiss, S. Cerbin, J. Salujoe, R. Franken, D. Stephens & B. Moss, 2003. The distribution of chydorids (Branchiopoda, Anomopoda) in European shallow lakes and its application to ecological quality monitoring. Archiv für Hydrobiologie 156: 181–202.

    Article  Google Scholar 

  • DeMott, W. R., 1985. Relations between filter mesh-size, feeding mode, and capture efficiency for cladocerans feeding on ultrafine particles. Archiv für Hydrobiologie Beiheft Ergebnisse der Limnologie 21: 125–134.

    Google Scholar 

  • Dodson, S. I., S. E. Arnott & K. L. Cottingham, 2000. The relationship in lake communities between primary productivity and species richness. Ecology 81: 2662–2679.

    Article  Google Scholar 

  • Duigan, C. A., 1992. The ecology and distribution of the littoral freshwater Chydoridae (Branchiopoda, Anomopoda) of Ireland, with taxonomic comments on some species. Hydrobiologia 241: 1–70.

    Article  Google Scholar 

  • Flössner, D., 2000. Die Haplopoda und Cladocera (ohne Bosminidae) Mitteleuropas. Backhuys Publishers, Leiden.

    Google Scholar 

  • Gannon, J. E. & R. S. Stemberger, 1978. Zooplankton (especially Crustaceans and Rotifers) as indicators of water quality. Transactions of the American Microscopical Society 97: 16–35.

    Article  Google Scholar 

  • Geller, W. & H. Müller, 1981. The filtration apparatus of Cladocera: filter mesh-sizes and their implications on food selectivity. Oecologia 49: 316–321.

    Article  Google Scholar 

  • Gliwicz, Z. M., 1977. Food size selection and seasonal succession of filter feeding zooplankton in an eutrophic lake. Ekologia Polska 25: 179–225.

    Google Scholar 

  • Hansen, A. M., J. V. Christensen & O. Sortkajer, 1991. Effect of high pH on zooplankton and nutrients in fish-free enclosures. Archiv für Hydrobiologie 123: 143–164.

    Google Scholar 

  • Herbst, H. V., 1976. Blattfusskrebse (Phyllopoden: Echte Blattfüsser und Wasserflöhe). Kosmos Verlag, Stuttgart.

    Google Scholar 

  • Hessen, D. O., 1985. Filtering structures and particle size selection in coexisting Cladocera. Oecologia 66: 368–372.

    Article  Google Scholar 

  • Hessen, D. O., B. A. Faafeng, V. H. Smith, V. Bakkestuen & B. Walseng, 2006. Extrinsic and intrinsic controls of zooplankton diversity in lakes. Ecology 87: 433–443.

    Article  PubMed  Google Scholar 

  • Hessen, D. O., J. P. Nilssen & T. O. Eriksen, 1986. Food size spectra and species replacement within herbivorous zooplankton. Internationale Revue gesamten Hydrobiologie 71: 1–10.

    Article  Google Scholar 

  • Hill, M. O. & H. G. Gauch, 1980. Detrended correspondence analysis: an improved ordination technique. Plant Ecology 43: 47–58.

    Google Scholar 

  • Jeppesen, E., J. P. Jensen, C. Jensen, B. Faafeng, D. O. Hessen, M. Søndergaard, T. Lauridsen, P. Brettum & K. Christoffersen, 2003. The impact of nutrient state and lake depth on top-down control in the pelagic zone of lakes: a study of 466 lakes from the temperate zone to the arctic. Ecosystems 6: 313–325.

    Article  CAS  Google Scholar 

  • Jeppesen, E., J. P. Jensen, M. Søndergaard & T. L. Lauridsen, 2005. Response of fish and plankton to nutrient loading reduction in eight shallow Danish lakes with special emphasis on seasonal dynamics. Freshwater Biology 50: 1616–1627.

    Article  CAS  Google Scholar 

  • Jeppesen, E., P. Nõges, T. A. Davidson, J. Haberman, T. Nõges, K. Blank, T. L. Lauridsen, M. Søndergaard, C. Sayer, R. Laugaste, L. S. Johansson, R. Bjerring & S. L. Amsinck, 2011. Zooplankton as indicators in lakes: a scientific-based plea for including zooplankton in the ecological quality assessment of lakes according to the European Water Framework Directive (WFD). Hydrobiologia 676: 279–297.

    Article  CAS  Google Scholar 

  • Jeppesen, E., M. Søndergaard, J. P. Jensen, E. Mortensen, A. M. Hansen & T. Jorgensen, 1998. Cascading trophic interactions from fish to bacteria and nutrients after reduced sewage loading: an 18-year study of a shallow hypertrophic lake. Ecosystems 1: 250–267.

    Article  CAS  Google Scholar 

  • Karabin, A., 1985. Pelagic zooplankton (Rotatoria + Crustacea) variation in the process of lake eutrophication. I. Structural and quantitative features. Ekologia Polska 33: 567–616.

    Google Scholar 

  • Leibold, M. A., 1999. Biodiversity and nutrient enrichment in pond plankton communities. Evolutionary Ecology Research 1: 73–95.

    Google Scholar 

  • Liboriussen, L. & E. Jeppesen, 2006. Structure, biomass, production and depth distribution of periphyton on artificial substratum in shallow lakes with contrasting nutrient concentrations. Freshwater Biology 51: 95–109.

    Article  CAS  Google Scholar 

  • Lyche, A., 1990. Cluster analysis of plankton community structure in 21 lakes along a gradient of trophy. Verhandlungen des Internationalen Verein Limnologie 24: 586–591.

    Google Scholar 

  • Nevalainen, L., K. Sarmaja-Korjonen & T. P. Luoto, 2011. Sedimentary Cladocera as indicators of past water-level changes in shallow northern lakes. Quaternary Research 75: 430–437.

    Article  Google Scholar 

  • NS4720, 1979. Water analysis—determination of pH. Standards Norway.

  • NS4725, 1984. Water analysis—determination of total phosphorus—digestion by peroxodisulphate. Standards Norway.

  • NS4743, 1993. Water analysis—determination of total nitrogen after oxidation by peroxodisulphate. Standards Norway.

  • NS-EN15110, 2006. Water quality—guidance standard for the sampling of zooplankton from standing waters. Standards Norway.

  • NS-EN-ISO14911, 1999. Water quality—determination of dissolved Li+, Na+, NH4+, K+, Mn2+, Ca2+, Mg2+, Sr2+ and Ba2+ using ion chromatography—method for water and waste water. Standards Norway.

  • NS-ISO8245, 1987. Water quality—guidelines for the determination of total organic carbon (TOC). Standards Norway.

  • Økland, R. H., 1990. Vegetation ecology: theory, methods and applications with reference to fennoscandia. Sommerfeltia 1(Suppl.):1–172.

    Google Scholar 

  • Palmer, M. W., 1993. Putting things in even better order—the advantages of canonical correspondence-analysis. Ecology 74: 2215–2230.

    Article  Google Scholar 

  • Pejler, B., 1965. Regional-ecological studies of Swedish fresh-water zooplankton. Zoologiska bidrag från Uppsala 36: 407–515.

    Google Scholar 

  • Pejler, B., 1983. Zooplanktic indicators of trophy and their food. Hydrobiologia 101: 111–114.

    Article  Google Scholar 

  • Penning, W. E., M. Mjelde, B. Dudley, S. Hellsten, J. Hanganu, A. Kolada, M. van den Berg, S. Poikane, G. Phillips, N. Willby & F. Ecke, 2008. Classifying aquatic macrophytes as indicators of eutrophication in European lakes. Aquatic Ecology 42: 237–251.

    Article  CAS  Google Scholar 

  • Scheffer, M. & E. H. van Nes, 2007. Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size. Hydrobiologia 584: 455–466.

    Article  CAS  Google Scholar 

  • Smirnow, N. N., 1971. Chydoridae. Fauna USSR, Crustacea 1 (2). Israel Program for Scientific Translation 1974, Jerusalem.

  • Soininen, J. & M. Luoto, 2012. Is catchment productivity a useful predictor of taxa richness in lake plankton communities? Ecological Applications 22: 624–633.

    Article  PubMed  Google Scholar 

  • ter Braak, C. J. F., 1995. Ordination. In Jongman, R. H. G., C. J. F. ter Braak & O. F. R. van Tongeren (eds.), Data analysis in community and landscape ecology. Cambridge University Press, Cambridge: 1–299.

    Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca NY, USA.

  • Vadeboncoeur, Y., E. Jeppesen, M. J. V. Zanden, H. H. Schierup, K. Kristoffersen & D. M. Lodge, 2003. From Greenland to green lakes: cultural eutrophication and the loss of benthic pathways in lakes. Limnology and Oceanography 48: 1408–1418.

    Article  Google Scholar 

  • Walseng, B. & G. Halvorsen, 2005. Littoral microcrustaceans as indices of trophy. Verhandlungen des Internationalen Verein Limnologie 29: 827–829.

    Google Scholar 

  • Walseng, B., D. O. Hessen, G. Halvorsen & A. K. Schartau, 2006. Major contribution from littoral crustaceans to zooplankton species richness in lakes. Limnology and Oceanography 51: 2600–2606.

    Article  Google Scholar 

  • Walseng, B. & L. R. Karlsen, 2001. Planktonic and littoral microcrustaceans as indices of recovery in limed lakes in SE Norway. Water, Air, and Soil pollution 130: 1313–1318.

    Article  Google Scholar 

  • Walseng, B. & A. K. L. Schartau, 2001. Crustacean communities in Canada and Norway: comparison of species along a pH gradient. Water, Air, and Soil pollution 130: 1319–1324.

    Article  Google Scholar 

  • Walseng, B., N. D. Yan & A. K. Schartau, 2003. Littoral microcrustacean (Cladocera and Copepoda) indicators of acidification in Canadian Shield lakes. Ambio 32: 208–213.

    PubMed  Google Scholar 

  • Watson, S., E. McCauley & J. A. Downing, 1992. Sigmoid relationships between phosphorus, algal biomass and algal community structure. Canadian Journal of Fisheries and Aquatic Sciences 49: 2605–2610.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The study was supported by the Norwegian Institute for Nature Research and the Norwegian Directorate for Nature Management. M. Evju, E. Framstad, I. C. Myhre and three anonymous reviewers provided valuable suggestions and comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Correll Jensen.

Additional information

Guest editors: Marina Manca & Piet Spaak / Cladocera: Proceedings of the 9th International Symposium on Cladocera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jensen, T.C., Dimante-Deimantovica, I., Schartau, A.K. et al. Cladocerans respond to differences in trophic state in deeper nutrient poor lakes from Southern Norway. Hydrobiologia 715, 101–112 (2013). https://doi.org/10.1007/s10750-012-1413-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1413-5

Keywords

Navigation