Hydrobiologia

, Volume 707, Issue 1, pp 59–71 | Cite as

Resistance and resilience of winter-emerging Chironomidae (Diptera) to a flood event: implications for Minnesota trout streams

Primary Research Paper

Abstract

Disturbances caused by rainfall are common in streams with the impact on stream inhabitants determined by the frequency, intensity, and predictability of the event. Here, we examine the response of winter-emerging Chironomidae (Diptera) to extreme flooding disturbance. In August of 2007, a severe flood impacted southeastern Minnesota, imparting stress on aquatic communities. Chironomid pupal exuviae collections were obtained biweekly from 18 southeast Minnesota streams during the following winter to assess resistance and resilience of winter-active chironomids to flooding. Streams examined were divided into moderate (2.5–10 cm), heavy (10–20 cm), or extreme (20+ cm) rainfall categories with rainfall amounts in each category representing total precipitation during the 3-day storm. Post-flood samples were compared to samples obtained from the same localities during prior winters. Our findings contradict studies of responses by Chironomidae to flooding during warmer-water conditions and show that winter-emerging Chironomidae are resistant to stress imposed by summer spates. Significantly more taxa emerged during winter after flooding as compared to historic collections, and the number of species emerging in winter was positively correlated with rainfall severity, indicating that 15 species responded opportunistically to disturbance. This indicates that winter-active Chironomidae may be resistant to increased severity of summer spates associated with climate change predictions.

Keywords

Chironomidae Disturbance Flood Winter-emergence Resistance Resilience Trout streams Spate Diamesa Orthocladius Micropsectra 

Supplementary material

10750_2012_1406_MOESM1_ESM.pdf (93 kb)
Supplementary material 1 (PDF 93 kb)

References

  1. Anderson, A. M., R. W. Bouchard & L. C. Ferrington, 2011. Hibernal emergence of Chironomidae (Diptera) in relation to stream size in Kansas, USA. In Wang, X. & W. Liu (eds), Contemporary Chironomid Studies—Proceedings of the 17th International Symposium on Chironomidae. Nankai University Press, Tianjin, China: 247–255.Google Scholar
  2. Armitage, P. D., 1995a. Behaviour and ecology of adults. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: The Biology and Ecology of Non-biting Midges. Chapman and Hall, London: 194–219.Google Scholar
  3. Armitage, P. D., 1995b. Chironomidae as food. In Armitage, P. D., P. S. Cranston & L. C. V. Pinder (eds), The Chironomidae: Biology and Ecology of Nonbiting Midges. Chapman & Hall, London: 423–435.Google Scholar
  4. Barbour, M. T., J. Gerritsen, B. D. Snyder & J. B. Stribling, 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: Periphyton, benthic macroinvertebrates and fish, 2nd ed. EPA/841/B/99/002. Office of Water, U.S. Environmental Protection Agency, Washington, DC.Google Scholar
  5. Berg, M. B. & R. A. Hellenthal, 1992. The role of Chironomidae in energy flow of a lotic ecosystem. Netherlands Journal of Aquatic Ecology 26: 471–476.CrossRefGoogle Scholar
  6. Bouchard, R. W., 2007. Phenology and taxonomic composition of lotic Chironomidae (Diptera) communities in contrasting thermal regimes. M.S/PhD Thesis(?) University of Minnesota.Google Scholar
  7. Bouchard, R. W. & L. C. Ferrington, 2008. Determination of Chironomidae thermal preferences and thermal partitioning among closely related taxa in a Minnesota stream using surface floating pupal exuviae. Boletim do Museu Municipal do Funchal Supplement 13: 191–198.Google Scholar
  8. Bouchard, R. W. & L. C. Ferrington, 2009. Winter growth, development, and emergence of Diamesa mendotae (Diptera: Chironomidae) in Minnesota streams. Environmental Entomology 38: 250–259.PubMedCrossRefGoogle Scholar
  9. Bouchard, R. W., M. A. Carrillo & L. C. Ferrington, 2006. Lower lethal temperature for adult male Diamesa mendotae Muttkowski (Diptera: Chironomidae), a winter-emerging aquatic insect. Aquatic Insects 28: 57–66.CrossRefGoogle Scholar
  10. Boulton, A. J., C. G. Peterson, N. B. Grimm & S. G. Fisher, 1992. Stability of an aquatic macroinvertebrate community in a multiyear hydrologic disturbance regime. Ecology 73: 2192–2207.CrossRefGoogle Scholar
  11. Carrillo, M. A., C. A. Cannon & L. C. Ferrington Jr., 2004. Effect of sex and age on the supercooling point of the winter-active Diamesa mendotae Muttkowski (Diptera: Chironomidae). Aquatic Insects 26: 243–251.CrossRefGoogle Scholar
  12. Christensen, J. H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R. K. Kolli, W. T. Kwon, R. Laprise, V. Magana Rueda, L. Mearns, C. G. Menedez, J. Raeisaenen, A. Rinke, A. Sarr & P. Whetton, 2007. Regional climate projections. In Solomon, S., et al. (eds), Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change.Google Scholar
  13. Clarke, K. R., 1993. Nonparametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  14. Coffman, W. P., 1973. Energy flow in a woodland stream ecosystem: II. The taxonomic composition of the Chironomidae as determined by the collection of pupal exuviae. Archiv fuer Hydrobiologie 71: 281–322.Google Scholar
  15. Coffman, W. P. & L. C. Ferrington Jr., 1996. Chironomidae. In Meritt, R. W. & K. W. Cummins (eds), An Introduction to the Aquatic Insects of North America, 3rd ed. Kendall/Hunt Publishing Company, Dubuque, IA: 635–754.Google Scholar
  16. Dieterman, D. J. & M. Merten, 2003. History of trout management in southeast Minnesota, 1874–2003. Staff Report 61. Division of Fisheries, Minnesota Department of Natural Resources, St. Paul, MN.Google Scholar
  17. Dodds, W. K., K. Gido, M. R. Whiles, K. M. Fritz & W. J. Matthews, 2004. Life on the edge: the ecology of great plains prairie streams. BioScience 54: 205–216.CrossRefGoogle Scholar
  18. Dole-Olivier, M. J., 2011. The hyporheic refuge hypothesis reconsidered: a review of hydrological aspects. Marine and Freshwater Research 62: 1281–1302.CrossRefGoogle Scholar
  19. Dole-Olivier, M. J., P. Marmonier & J. L. Beffy, 1997. Response of invertebrates to lotic disturbance: is the hyporheic zone a patchy refugium? Freshwater Biology 37: 257–276.CrossRefGoogle Scholar
  20. Donley, S., L. C. Ferrington & D. Strayer, 1998. The habitat of Paraboreochlus larvae (Diptera: Chironomidae). Journal of the Kansas Entomological Society 71: 501–504.Google Scholar
  21. Eggermont, H. & O. Heiri, 2012. The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biological Reviews 87: 430–456.PubMedCrossRefGoogle Scholar
  22. Ferrington, L. C., 1984. Evidence for the hyporheic zone as a microhabitat of Krenosmittia spp. larvae (Diptera, Chironomidae). Journal of Freshwater Ecology 2: 353–358.CrossRefGoogle Scholar
  23. Ferrington, L. C., 1987. Microhabitat preferences of larvae of three Orthocladiinae species (Diptera, Chironomidae) in Big Springs, a sandbottom spring in the High-Plains of western Kansas. Entomologica Scandinavica 29: 361–368.Google Scholar
  24. Ferrington, L. C., 2000. Hibernal emergence patterns of Chironomidae in lotic habitats of Kansas versus ambient air and water temperatures. In Hoffrichter, O. (ed.), Late 20th Century Research on Chironomidae: an Anthology from the 13th International Symposium on Chironomidae. Shaker Verlag, Aachen: 375–382.Google Scholar
  25. Ferrington, L. C., 2007. Hibernal emergence patterns of Chironomidae in lotic habitats of Kansas versus substrate composition. In Anderson, T. (ed.), Contributions to the Systematics and Ecology of Aquatic Diptera—A Tribute to Ole A Saether. The Caddis Press: 99–105.Google Scholar
  26. Ferrington, L. C., 2008. Global diversity of non-biting midges (Chironomidae; Insecta-Diptera) in freshwater. Hydrobiologia 595: 447–455.CrossRefGoogle Scholar
  27. Ferrington, L. C., M. A. Blackwood, C. A. Wright, N. H. Crisp, J. L. Kavanaugh & F. J. Schmidt, 1991. A protocol for using surface-floating pupal exuviae of Chironomidae for rapid bioassessment of changing water-quality. IAHS Publication 203: 181–190.Google Scholar
  28. Ferrington, L. C., K. M. Buzby & E. C. Masteller, 1993. Composition and temporal abundance of Chironomidae emergence from a tropical rain-forest stream at El-Verde, Puerto-Rico. Journal of the Kansas Entomological Society 66: 167–180.Google Scholar
  29. Ferrington, L. C., M. B. Berg & W. P. Coffman, 2008. Chironomidae. In Merritt, R. W., K. W. Cummins & M. B. Berg (eds), An Introduction to the Aquatic Insects of North America, Vol. 4th, 4th ed., Kendall/Hunt Publishing Company Dubuque, IA: 847–989.Google Scholar
  30. Fisher, S. G., L. J. Gray, N. B. Grimm & D. E. Busch, 1982. Temporal succession in a desert stream ecosystem following flash flooding. Ecological Monographs 52: 93–110.CrossRefGoogle Scholar
  31. Fritz, K. M. & W. K. Dodds, 2004. Resistance and resilience of macroinvertebrate assemblages to drying and flood in a tallgrass prairie stream system. Hydrobiologia 527: 99–112.CrossRefGoogle Scholar
  32. Füreder, L., 1999. High alpine streams: cold habitats for insect larvae. In Margesin, R. & F. Schinner (eds), Cold Adapted Organisms: Ecology Physiology, Enzymology, and Molecular Biology. Springer-Verlag, Berlin, Germany: 181–196.Google Scholar
  33. Gendron, J. M. & H. Laville, 2000. Impact of a catastrophic flood on the chironomid populations (Diptera: Chironomidae) of the hyporhithral (4th order) zone of the river Aude (Eastern Pyrenees). In Hoffrichter, O. (ed.), Late 20th Century Research on Chironomidae: An Anthology from the 13th International Symposium on Chironomidae. Shaker Verlag, Aachen: 383–391.Google Scholar
  34. Genito, D., W. J. Gburek & A. N. Sharpley, 2002. Response of stream macroinvertebrates to agricultural land cover in a small watershed. Journal of Freshwater Ecology 17: 109–119.CrossRefGoogle Scholar
  35. Gotelli, N. J. & R. K. Colwell, 2011. Estimating species richness. In Magurran, A. E. & B. J. McGill (eds), Biological Diversity. Oxford University Press, New York.Google Scholar
  36. Grimm, N. B. & S. G. Fisher, 1989. Stability of periphyton and macroinvertebrates to disturbance by flash floods in a desert stream. Journal of the North American Benthological Society 8: 293–307.CrossRefGoogle Scholar
  37. Hax, C. L. & S. W. Golladay, 1998. Flow disturbance of macroinvertebrates inhabiting sediments and woody debris in a prairie stream. American Midland Naturalist 139: 210–223.CrossRefGoogle Scholar
  38. Hintze, J., 2001. NCSS and Pass. Number Cruncher Statistical Systems, Kaysville, Utah.Google Scholar
  39. Huston, M., 1979. A general hypothesis of species diversity. American Naturalist 113: 81–101.CrossRefGoogle Scholar
  40. Lenat, D. R., 1984. Agriculture and stream water-quality—a biological evaluation of erosion control practices. Environmental Management 8: 333–343.CrossRefGoogle Scholar
  41. Mackay, R. J., 1992. Colonization by lotic macroinvertebrates: a review of processes and patterns. Canadian Journal of Fisheries and Aquatic Sciences 49: 617–628.CrossRefGoogle Scholar
  42. Madsen, T. & N. Willcox, 2012. When it Rains it Pours. Environment America Research and Policy Center, Boston, MA.Google Scholar
  43. Malard, F., K. Tockner, M. J. Dole-Olivier & J. V. Ward, 2002. A landscape perspective of surface-subsurface hydrological exchanges in river corridors. Freshwater Biology 47: 621–640.CrossRefGoogle Scholar
  44. Matthaei, C. D., C. J. Arbuckle & C. R. Townsend, 2000. Stable surface stones as refugia for invertebrates during disturbance in a New Zealand stream. Journal of the North American Benthological Society 19: 82–93.CrossRefGoogle Scholar
  45. McCabe, D. J. & N. J. Gotelli, 2000. Effects of disturbance frequency, intensity, and area on assemblages of stream macroinvertebrates. Oecologia 124: 270–279.CrossRefGoogle Scholar
  46. Melo, A. S., D. K. Niyogi, C. D. Matthaei & C. R. Townsend, 2003. Resistance, resilience, and patchiness of invertebrate assemblages in native tussock and pasture streams in New Zealand after a hydrological disturbance. Canadian Journal of Fisheries and Aquatic Sciences 60: 731–739.CrossRefGoogle Scholar
  47. Miller, A. M. & S. W. Golladay, 1996. Effects of spates and drying on macroinvertebrate assemblages of an intermittent and a perennial prairie stream. Journal of the North American Benthological Society 15: 670–689.CrossRefGoogle Scholar
  48. Minnesota State Climatology Office, 2008. Heavy rain falls on southeastern Minnesota: August 18-20, 2007. http://climate.umn.edu/doc/journal/flash_floods/ff070820.htm Accessed Web Page 2009.
  49. Oksanen, J., F. G. Blanchet, R. Kindt, P. Legendre, P. R. Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, & H. Wagner. 2012. vegan: Community ecology package. R package version 2.0-4. http://CRAN.R-project.org/package=vegan.
  50. Oliver, D. R., 1971. Life history of the Chironomidae. Annual Review of Entomology 16: 211–230.CrossRefGoogle Scholar
  51. Reice, S. R., 1985. Experimental disturbance and the maintenance of species diversity in a stream community. Oecologia 67: 90–97.CrossRefGoogle Scholar
  52. Resh, V. H., A. V. Brown, A. P. Covich, M. E. Gurtz, H. W. Li, G. W. Minshall, S. R. Reice, A. L. Sheldon, J. B. Wallace & R. C. Wissmar, 1988. The Role of Disturbance in Stream Ecology. Journal of the North American Benthological Society 7: 433–455.CrossRefGoogle Scholar
  53. Sedell, J. R., G. H. Reeves, F. R. Hauer, J. A. Stanford & C. P. Hawkins, 1990. Role of refugia in recovery from disturbances: modern fragmented and disconnected river systems. Environmental Management 14: 711–724.CrossRefGoogle Scholar
  54. Sousa, W. P., 1984. The role of disturbance in natural communities. Annual Review of Ecologyical Systems 15: 353–391.CrossRefGoogle Scholar
  55. Suren, A. M. & I. G. Jowett, 2006. Effecs of floods versus low flows on invertebrates in a New Zealand gravel-bed river. Freshwater Biology 51: 2207–2227.CrossRefGoogle Scholar
  56. Sweeney, B. W., J. K. Jackson, J. D. Newbold & D. H. Funk, 1992. Climate change and the life histories and biogeography of aquatic insects in eastern North America. In Firth, P. & S. G. Fisher (eds), Global Climate Change and Freshwater Ecosystems. Springer-Verlag, New York: 143–176.CrossRefGoogle Scholar
  57. Townsend, C. R., M. R. Scarsbrook & S. Doledec, 1997. The intermediate disturbance hypothesis, refugia, and biodiversity in streams. Limnology and Oceanography 42: 938–949.CrossRefGoogle Scholar
  58. Trenberth, K. E., R. D. Jones, P. Ambenje, R. Bojariu, D. Easterling, A. Klein Tank, D. Parker, F. Rahimzadeh, J. A. Renwick, M. Rusticucci, B. Soden & P. Zhai, 2007. Observations: surface and atmospheric climate change. In Solomon, S., et al. (eds), Climate Change 2007: The Physical Science Basis Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.Google Scholar
  59. Waters, T. F., 1977. The Streams and Rivers of Minnesota. University of Minnesota Press, Minneapolis, MN.Google Scholar
  60. Wiederholm, T., 1986. Chironomidae of the Holarctic region—keys and diagnoses, Part 2, Pupae. Entomologica Scandinavica, Supplement 28: 1–471.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Alyssa M. Anderson
    • 1
    • 2
  • Leonard C. FerringtonJr.
    • 1
  1. 1.Department of EntomologyUniversity of MinnesotaSt. PaulUSA
  2. 2.Northern State UniversityAberdeenUSA

Personalised recommendations