Advertisement

Hydrobiologia

, Volume 709, Issue 1, pp 27–39 | Cite as

Does the fish presence influence the diurnal vertical distribution of zooplankton in high transparency lakes?

  • Rocco Tiberti
  • Rocco Iacobuzio
Primary Research Paper

Abstract

The avoidance of visually feeding fish has long been considered as the primary driver of diel vertical migration of zooplankton. The diurnal vertical distribution of Cyclops gr. abyssorum, Arctodiaptomus alpinus, and Daphnia gr. longispina from 13 alpine lakes with fish (Salvelinus fontinalis) and without, was compared in order to understand whether fish in transparent lakes reduce the presence of large zooplankton from the irradiated zone. We used the light level at each sampling depth and the size of each specimen as proxies of predation risk, and we tested two predictions: (P1) the relative abundance of zooplankton in the well-lit surface waters vs. the darker waters will be greater in fishless lakes; (P2) the size of zooplankton in the well-lit surface waters vs. the deeper, darker waters will be greater in fishless lakes. We did not find any evidence of the validity of P1, but we confirmed P2 for Arctodiaptomus alpinus. These results support with new field data the Transparency Regulator Hypothesis, which argues that in transparent lakes, fish predation is less important for the vertical distribution of zooplankton than ultraviolet radiation, and further suggest that zooplankton size rather than vertical distribution may be more effective against visual predators in transparent lakes.

Keywords

Alpine lakes Introduced fish Gran Paradiso National Park Transparency Regulator Hypothesis Vertical Migration 

Notes

Acknowledgments

We thank Achaz von Hardenberg, Bruno Bassano (Gran Paradiso National Park), and Giuseppe Bogliani (University of Pavia) for their support and contributions to the research program. We thank Cristiana Callieri and Roberto Bertone (ISE-CNR) for lending us the light meter, and Andrew Sturgeon for his kind revision of the manuscript. Logistic support and funding for this research was provided by the Gran Paradiso National Park within the framework of the FP7 ACQWA Project (Assessment of Climatic change and impacts on the Quantity and quality of Water), Grant Agreement No. 212250.

References

  1. Aguilera, X., G. Crespo, S. Declerck & L. De Meester, 2006. Diel vertical migration of zooplankton in tropical high mountain lakes (Andes, Bolivia). Polish Journal of Ecology 54: 453–464.Google Scholar
  2. Bartón, K., 2011. MuMIn: Multi-model inference. R package version 1.6.5. Available at: http://cran.r-project.org/web/packages/MuMIn/index.html. Accessed on 20 March 2012.
  3. Brancelj, A., 1999. The extintion of Arctodiaptomus alpinus (Copepoda) following the introduction of charr into a small alpine lake Dvojno Jezero (NW Slovenia). Aquatic Ecology 33: 355–361.CrossRefGoogle Scholar
  4. Caldwell, M. M., R. Robberecht & W. D. Billings, 1980. A steep latitudinal gradient of solar Ultraviolet-B radiation in the Arctic-Alpine life zone. Ecology 61: 600–611.CrossRefGoogle Scholar
  5. Compagnoni, R., G. Elter & B. Lombardo, 1974. Eterogeneità stratigrafica del complesso degli “Gneiss Minuti” nel massiccio cristallino del Gran Paradiso. Memorie della Società Geologica Italiana 13: 227–239.Google Scholar
  6. Confer, J. L., G. L. Howick, M. H. Corzette, S. L. Kramer, S. Fitzgibbon & R. Landesberg, 1978. Visual predation by planktivores. Oikos 31: 27–37.CrossRefGoogle Scholar
  7. Dodson, S., 1990. Predicting diel vertical migration of zooplankton. Limnology and Oceanography 35: 1195–1200.CrossRefGoogle Scholar
  8. Downing, J. A., C. Plante & S. Lalonde, 1990. Fish production correlated with primary productivity, not the Morphoedaphic Index. Canadian Journal of Fisheries and Aquatic Sciences 47: 1929–1936.CrossRefGoogle Scholar
  9. Eby, L. A., W. J. Roach, L. B. Crowder & J. A. Stanford, 2006. Effects of stocking-up freshwater food webs. Trends in Ecology and Evolution 21: 576–584.PubMedCrossRefGoogle Scholar
  10. Edmonson, W. T. & G. G. Wiberg, 1971. A Manual on Methods for the Assessment of Secondary Productivity in fresh Waters. Blackwell Scientific Publications, Oxford.Google Scholar
  11. Fischer, J. M., J. L. Nicolai, C. E. Williamson, A. D. Persaud & R. S. Lockwood, 2006. Effects of ultraviolet radiation on diel vertical migration of crustacean zooplankton: an in situ mesocosm experiment. Hydrobiologia 563: 217–224.CrossRefGoogle Scholar
  12. Gliwicz, Z. M., 1986. Predation and the evolution of vertical migration in zooplankton. Nature 320: 746–748.CrossRefGoogle Scholar
  13. Gliwicz, Z. M. & M. G. Rowan, 1984. Survival of Cyclops abyssorum tatricus (Copepoda, Crustacea) in alpine lakes stocked with planktivorous fish. Limnology and Oceanography 29: 1290–1299.CrossRefGoogle Scholar
  14. Grueber, C. E., S. Nakagawa, R. J. Laws & I. G. Jamieson, 2011. Multimodel inference in ecology and evolution: challenges and solutions. Journal of Evolutionary Biology 24: 699–711.PubMedCrossRefGoogle Scholar
  15. Kessler, K., R. S. Lockwood, C. E. Williamson & J. E. Saros, 2008. Vertical distribution of zooplankton in subalpine and alpine lakes: ultraviolet radiation, fish predation, and the transparency-gradient hypothesis. Limnology and Oceanography 53: 2374–2382.CrossRefGoogle Scholar
  16. Knapp, R. A., K. R. Matthews & O. Sarnelle, 2001. Resistance and resilience of alpine lake fauna to fish introductions. Ecological Monographs 71: 401–421.CrossRefGoogle Scholar
  17. Hansson, L. A. & S. Hylander, 2009a. Effects of ultraviolet radiation on pigmentation, photoenzymatic repair, behavior, and community ecology of zooplankton. Photochemical and Photobiological Sciencies 8: 1266–1275.CrossRefGoogle Scholar
  18. Hansson, L. A. & S. Hylander, 2009b. Size-structured risk assessments govern Daphnia migration. Proceedings of the Royal Society B 276: 331–336.PubMedCrossRefGoogle Scholar
  19. Hansson, L. A., S. Hylander & R. Sommaruga, 2007. Escape from UV threats in zooplankton: a cocktail of behavior and protective pigmentation. Ecology 88: 1932–1939.PubMedCrossRefGoogle Scholar
  20. Hargreaves, B. R., S. F. Girdner, M. W. Buktenica, R. W. Collier, E. Urbach & G. L. Larson, 2007. Ultraviolet radiation and bio-optics in Crater Lake, Oregon. Hydrobiologia 574: 107–140.CrossRefGoogle Scholar
  21. Hays, G. C., A. J. Warner & C. A. Proctor, 1995. Spatio temporal patterns in the diel vertical migration of the copepod Metridia lucens in the northeast Atlantic derived from the Continuous Plankton Recorder survey. Limnology and Oceanography 40: 469–475.CrossRefGoogle Scholar
  22. Hylander, S., N. Larsson & L. A. Hansson, 2009. Zooplankton vertical migration and plasticity of pigmentation arising from simultaneous UV and predation threats. Limnology and Oceanography 54: 483–491.CrossRefGoogle Scholar
  23. Iacobuzio, R. & R. Tiberti, 2011. Cloud cover does not clearly affect the diurnal vertical distribution of crustacean zooplankton in naturally fishless alpine lakes. Plankton and Benthos Research 6: 210–214.CrossRefGoogle Scholar
  24. Laforsch, C. & R. Tollrian, 2009. Cyclomorphosis and phenotypic changes. In Lickens, G. E. (ed.), Encyclopedia of Inland Waters, Vol. 3. Elsevier, Oxford: 643–650.CrossRefGoogle Scholar
  25. Lampert, W., 1989. The adaptive significance of diel vertical migration of zooplankton. Functional Ecology 3: 21–27.CrossRefGoogle Scholar
  26. Leech, D. M. & C. E. Williamson, 2000. Is tolerance to UV radiation in zooplankton related to body size, taxon, or lake transparency? Ecological Applications 10: 1530–1540.CrossRefGoogle Scholar
  27. Leech, D. M. & C. E. Williamson, 2001. In situ exposure to ultraviolet radiation alters the depth distribution of Daphnia. Limnology and Oceanography 46: 416–420.CrossRefGoogle Scholar
  28. Leech, D. M., C. E. Williamson, R. E. Moeller & B. R. Hargreaves, 2005. Effects of ultraviolet radiation on the seasonal vertical distribution of zooplankton: a database analysis. Archiv für Hydrobiologie 162: 445–464.CrossRefGoogle Scholar
  29. Leech, D. M., W. J. Boeing, S. L. Cooke, C. E. Williamson & L. Torres, 2009. UV-enhanced fish predation and the differential migration of zooplankton in response to UV radiation and fish. Limnology and Oceanography 54: 1152–1161.CrossRefGoogle Scholar
  30. O’Brien, W.J., 1987. Planktivory by freshwater fish: thrust and parry in the pelagia. In Kerfoot, W. C. & A. Sih (eds), Predation. Direct and Indirect Impacts on Acquatic Communities. University Press of New England, Hanover: 3–16.Google Scholar
  31. Parker, B. R., D. W. Schindler, D. B. Donald & R. S. Anderson, 2001. The effects of stocking and removal of a nonnative salmonid on the plankton of an alpine lake. Ecosystems 4: 334–345.CrossRefGoogle Scholar
  32. Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar & the R Development Core Team, 2010. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1-97. Available at: http://cran.r-project.org/web/packages/nlme/index.html. Accessed on 20 March 2012.
  33. R Development Core Team, 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at: http://www.r-project.org/. Accessed on 20 March 2012.
  34. Rautio, M., A. Korhola & I. D. Zellmer, 2003. Vertical distribution of Daphnia longispina in a shallow subarctic pond: does the interaction of ultraviolet radiation and Chaoborus predation explain the pattern? Polar Biology 26: 659–665.CrossRefGoogle Scholar
  35. Rhode, S. C., M. Pawlowski & R. Tollrain, 2001. The impact of ultraviolet radiation on the vertical distribution of zooplankton of the genus Daphnia. Nature 412: 69–72.PubMedCrossRefGoogle Scholar
  36. Schabetsberger, R., M. Luger, G. Drozdowski & A. Jagsch, 2009. Only the small survive: monitoring long-term changes in the zooplankton community of an Alpine lake after fish introduction. Biological Invasions 11: 1335–1345.CrossRefGoogle Scholar
  37. Seckmeyer, G., B. Mayer, R. Erb & G. Bernhard, 1994. UV-B in Germany higher in 1993 than in 1992. Geophysical Research Letters 21: 577–580.CrossRefGoogle Scholar
  38. Stich, H. B. & W. Lampert, 1981. Predator evasion as an explanation of diurnal vertical migration by zooplankton. Nature 293: 396–398.CrossRefGoogle Scholar
  39. Tiberti, R., 2012. Ecology of alpine lakes in Gran Paradiso National Park. PhD Thesis, University of Pavia, Pavia.Google Scholar
  40. Tiberti, R. & M. Barbieri, 2011. Evidences of zooplankton vertical migration in stocked and never stocked alpine lakes in Gran Paradiso National Park (Italy). Oceanological and Hydrobiological Studies 40: 36–42.CrossRefGoogle Scholar
  41. Tiberti, R., G. A. Tartari & A. Marchetto, 2010. Geomorphology and hydrochemistry of 12 Alpine lakes in the Gran Paradiso National Park, Italy. Journal of Limnology 69: 242–256.CrossRefGoogle Scholar
  42. Tollrain, R. & C. D. Harvell, 1999. The Ecology and Evolution of Inducible Defenses. Princeton University Press, Princeton.Google Scholar
  43. Vinyard, G. L. & W. J. O’Brien, 1976. Effects of Light and Turbidity on the Reactive Distance of Bluegill Sunfish (Lepomis macrochirus). Journal of the Fisheries Research Board of Canada 33: 2845–2849.CrossRefGoogle Scholar
  44. Williamson, C. E. & P. J. Neale, 2009. Ultraviolet light. In Lickens, G. E. (ed.), Encylopedia of Inland Waters. Elsevier, Amsterdam: 705–714.CrossRefGoogle Scholar
  45. Williamson, C. E., O. G. Olson, S. E. Lott, N. D. Walker, D. R. Engstrom & B. R. Hargreaves, 2001. Ultraviolet radiation and zooplankton community structure following deglaciation in Glacier Bay, Alaska. Ecology 82: 1748–1749.CrossRefGoogle Scholar
  46. Williamson, C. E., J. M. Fischer, S. M. Bollens, E. P. Overholt & J. K. Breckenridge, 2011. Toward a more comprehensive theory of zooplankton diel vertical migration: integrating ultraviolet radiation and water transparency into the biotic paradigm. Limnology and Oceanography 56: 1603–1623.CrossRefGoogle Scholar
  47. Wright, D. I. & W. J. O’Brien, 1984. The development and field test of the tactical model of the planktivorous feeding of White crappie (Promoxis annularis). Ecological Monographs 54: 65–98.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.DSTA, Dipartimento di Scienze della Terra e dell’AmbienteUniversity of PaviaPaviaItaly
  2. 2.Alpine Wildlife Research CentreValsavarencheItaly

Personalised recommendations