Hydrobiologia

, Volume 705, Issue 1, pp 159–171 | Cite as

An initial assessment of drought sensitivity in Amazonian fish communities

  • Carlos E. C. Freitas
  • Flávia K. Siqueira-Souza
  • Robert Humston
  • Lawrence E. Hurd
Primary Research Paper

Abstract

The Amazon River Basin encompasses the world’s largest remaining tropical rainforest, and the largest freshwater system with the highest fish species diversity on earth, but global climate change is predicted to cause the loss of 7–12% of fish species by 2070. The severe drought anomaly of 2005, caused by warming of Atlantic surface waters, provided a unique opportunity to examine the impact of a major climatic disturbance on a tropical fish assemblage. We monitored fish species diversity in six Brazilian floodplain lakes along the Solimões River from 2004 to 2007 (before, during, and after drought). Statistical analysis revealed changes in species composition of these lakes following the drought, with both positive and negative responses observed. The response to drought was not uniform among species with regard to trophic guild or migratory behavior. SIMPER analysis showed that planktivores on the average increased in abundance in the years following the drought, carnivores and omnivores decreased, and herbivores and detritivores increased. Some of these changes were transitory, others persisted through monitoring. Migratory species disproportionately increased in abundance post-drought compared to non-migratory species. Interlake (β) diversity of fish declined during the drought year, indicating that lakes were becoming less heterogeneous in species composition, but showed a trend toward recovery of pre-drought level in the following years. According to both global climate change models and recent experience, the intensity and frequency of droughts in this region of the world is increasing. Given the sensitivity of resident fish species to the single, short-term, perturbation reported here, assessment of how tropical freshwater fish populations respond to drought will be crucial to understanding the consequences of this kind of perturbation to these communities and to the human inhabitants who depend upon this important protein source.

Keywords

Amazon River Basin Climate change Drought impact Floodplain lakes Freshwater fish diversity Tropical fish ecology 

References

  1. Batista, V. S., A. J. Inhamuns, C. E. C. Freitas & D. Freire-Brasil, 1998. Characterization of the fishery in river communities in the low-Solimões/high-Amazon region. Fisheries Management and Ecology 5: 419–435.CrossRefGoogle Scholar
  2. Beissner, B. E., P. R. Peres-Neto, E. S. Lindstrom, A. Barnett & M. L. Longhi, 2006. The role of environmental and spatial processes in structuring lake communities from bacteria to fish. Ecology 87: 2985–2991.CrossRefGoogle Scholar
  3. Bradshaw, C. J. A., N. S. Sodhi & B. W. Brook, 2009. Tropical turmoil: a biodiversity tragedy in progress. Frontiers in Ecology and the Environment 7: 79–87.CrossRefGoogle Scholar
  4. Chao, N. L., P. Petry, G. Prang, L. Sonnenschein & M. Tlusty, 2001. Conservation and management of ornamental fish resources of the Rio Negro Basin, Amazonia, Brasil (Project Piaba). Proceeding of the International Workshop on Amazon River Biodiversity, Editoria da universidade do Amazonas, Manaus, Brazil.Google Scholar
  5. Charney, N. & S. Record, 2010. Vegetarian: Jost Diversity Measures for Community Data. R Package Version 1.2. http://CRAN.R-project.org/package=vegetarian.
  6. Chellappa, S., M. R. Camara & N. T. Chellappa, 2003. Ecology of Cichla monoculus (Osteichthyes: Cichlidae) from a reservoir in the semi-arid region of Brazil. Hydrobiologia 504: 267–273.CrossRefGoogle Scholar
  7. Clarke, K. R., 1993. Non-parametric multivariate analyses of changes in community structure. Australian Journal of Ecology 18: 117–143.CrossRefGoogle Scholar
  8. Clarke, K. R. & R. N. Gorley, 2006. PRIMER v6: User Manual/Tutorial. PRIMER-E, Plymouth.Google Scholar
  9. Cox, P. M., P. P. Harris, C. Huntingford, R. A. Betts, M. Collins, C. D. Jones, T. E. Jupp, J. A. Marengo & C. A. Nobre, 2008. Increasing risk of Amazonian drought due to decreasing aerosol pollution. Nature 453: 212–215.PubMedCrossRefGoogle Scholar
  10. Davis, J. M., A. D. Rosemond, S. L. Eggert, W. F. Cross & J. B. Wallace, 2010. Long-term nutrient enrichment decouples predator and prey production. Proceedings of the National Academy of Sciences USA 107: 121–126.CrossRefGoogle Scholar
  11. deRuiter, P. C., V. Wolters, J. C. Moore & K. O. Winemiller, 2005. Food web ecology: playing Jenga and beyond. Science 309: 68–71.CrossRefGoogle Scholar
  12. Dudgeon, D. A., A. H. Arthington, M. O. Gessner, Z.-I. Kawabata, D. J. Knowler, C. Lévêque, R. J. Naiman, A.-H. Prieur-Richard, D. Soto, M. J. L. Stiassny & C. A. Sullivan, 2006. Freshwater biodiversity: importance, threats, status and conservation challenges. Biological Review 81: 163–182.Google Scholar
  13. Freitas, C. E. C. & R. C. S. Garcez, 2004. Fish communities of natural canals between floodplain lakes and Solimões-Amazonas River. Acta Limnologica Brasiliensia 16: 273–280.Google Scholar
  14. Freitas, C. E. C., F. K. Siqueira-Souza, K. L. L. Prado, K. C. Yamamoto & L. E. Hurd, 2010. Factors determining fish species diversity in Amazonian floodplain lakes. In Rojas, N. & R. Prieto (eds), Amazon Basin: Plant Life, Wildlife and Environment. Nova Science Publishers, New York: 41–76.Google Scholar
  15. Hoeinghaus, D. J., C. A. Layman, D. A. Arrington & K. O. Winemiller, 2003. Spatiotemporal variation in fish assemblage structure in tropical floodplain creeks. Environmental Biology of Fishes 67: 379–387.CrossRefGoogle Scholar
  16. Hoorn, C., et al., 2010. Amazonia through time: Andean uplift, climate change, landscape evolution, and biodiversity. Science 330: 927–931.PubMedCrossRefGoogle Scholar
  17. Jenkins, M., 2003. Prospects for biodiversity. Science 302: 1175–1177.PubMedCrossRefGoogle Scholar
  18. Jost, L., 2006. Entropy and diversity. Oikos 113: 363–375.CrossRefGoogle Scholar
  19. Jost, L., 2007. Partitioning diversity into independent alpha and beta components. Ecology 88: 2427–2439.PubMedCrossRefGoogle Scholar
  20. Junk, W. J., O. B. Bayley & R. E. Sparks, 1989. The flood pulse concept in river floodplain system. Canadian Special Publication of Fisheries and Aquatic Science 106: 110–127.Google Scholar
  21. Kruskal, J. B., 1964. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29: 1–27.CrossRefGoogle Scholar
  22. Latini, A. O. & M. Petrere, 2004. Reduction of a native fish fauna by alien species: an example from Brazilian freshwater tropical lakes. Fisheries Management and Ecology 11: 71–79.CrossRefGoogle Scholar
  23. Malhi, Y., J. T. Roberts, R. A. Betts, T. J. Killeen, W. Li & C. A. Nobre, 2008. Climate change, deforestation, and the fate of the Amazon. Science 319: 169–172.PubMedCrossRefGoogle Scholar
  24. Marengo, J. A., C. A. Nobre, J. Tomasella, M. D. Oyama, G. S. de Oliveira, R. de Oliveira, H. Carmago, L. M. Alves & I. F. Brown, 2008. The drought of Amazonia in 2005. Journal of Climatology 21: 495–516.CrossRefGoogle Scholar
  25. Parmesan, C., 2006. Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics 37: 637–669.CrossRefGoogle Scholar
  26. Phillips, O. L., et al., 2009. Drought sensitivity of the Amazon rainforest. Science 323: 1344–1347.PubMedCrossRefGoogle Scholar
  27. Pittock, J., L. J. Hansen & R. Abell, 2008. Running dry: freshwater biodiversity, protected areas and climate change. Biodiversity 9: 30–39.CrossRefGoogle Scholar
  28. R Development Core Team, 2010. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. http://www.R-project.org.
  29. Reis, R. E., S. O. Kullander & C. J. Ferraris Jr, 2003. Check List of the Freshwater Fishes of South and Central America. Edipucrs, Porto Alegre.Google Scholar
  30. Rodríguez, M. A. & W. M. Lewis Jr, 1997. Structure of fish assemblages along environmental gradients in floodplain lakes of the Orinoco River. Ecological Monographs 67: 109–128.Google Scholar
  31. Salazar, L. F., C. A. Nobre & M. D. Oyama, 2007. Climate change consequences on the biome distribution in tropical South America. Geophysical Research Letters 34: L0970.CrossRefGoogle Scholar
  32. Siqueira-Souza, F. K. & C. E. C. Freitas, 2004. Fish diversity of floodplain lakes on the lower stretch of the Solimões river. Brazilian Journal of Biology 64: 501–510.CrossRefGoogle Scholar
  33. Soares, M. G. M., E. L. Costa, F. K. Siqueira-Souza, H. D. B. Anjos, K. C. Yamamoto & C. E. C. Freitas, 2007. Peixes de lagos do médio rio Solimões. EDUA, Manaus, Brazil.Google Scholar
  34. Sousa, R. G. C. & C. E. C. Freitas, 2008. The influence of flood pulse on fish communities of floodplain canals in the middle Solimões River, Brazil. Neotropical Ichthyology 6: 249–255.CrossRefGoogle Scholar
  35. Tejerina-Garro, F. L., R. Fortin & M. A. Rodríguez, 1998. Fish community structure in relation to environmental variation in floodplain lakes of the Araguaia River, Amazon Basin. Environmental Biology of Fishes 51: 399–410.CrossRefGoogle Scholar
  36. Val, A. L. & V. M. F. Almeida-Val, 1995. Fishes of the Amazon and Their Environment: Physiological and Biochemical Aspects. Springer, Heidelberg.CrossRefGoogle Scholar
  37. Winemiller, K. O., 2004. Floodplain river food webs: generalizations and implications for fisheries management. Proceedings of the Second International Symposium on the Management of Large Rivers for Fisheries Volume II. Regional Office for Asia and the Pacific, Bangkok, Thailand (RAP Publication 2004/16): 285–309.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Carlos E. C. Freitas
    • 1
  • Flávia K. Siqueira-Souza
    • 1
  • Robert Humston
    • 2
  • Lawrence E. Hurd
    • 3
  1. 1.Universidade Federal do AmazonasManausBrazil
  2. 2.Department of Biology and Environmental Studies ProgramWashington and Lee UniversityLexingtonUSA
  3. 3.Department of BiologyWashington and Lee UniversityLexingtonUSA

Personalised recommendations