Advertisement

Hydrobiologia

, Volume 715, Issue 1, pp 77–86 | Cite as

The late Holocene appearance of European Bosmina (Eubosmina) thersites (Crustacea, Cladocera) in lakes surrounding the Baltic Sea

  • Leszek A. BłędzkiEmail author
  • Krystyna Szeroczyńska
  • Egle Puusepp
CLADOCERA

Abstract

This study shows the appearance of Bosmina (Eubosmina) thersites during the last millennium in two lakes in Northern Europe: Lake Charzykowskie (Poland) and Lake Lohja (Estonia). Cladocera remains collected from both lakes showed similar Bosmina species composition and changes during the late Holocene. Older sediment layers showed a prevalence of smaller Eubosmina species (B. (E.) longispina), indicating oligotrophic conditions of the lakes, while younger layers were dominated by larger species (B. (E.) coregoni and B. (E.) thersites), typically found in lakes with higher trophy. The presence of B. (E.) thersites has rarely been reported in paleolimnological research, and this is the first observance of its high abundance in lake sediments. More research is needed, however, to better understand the appearance, speciation driver, continental range, and ecological preferences of B. (E.) thersites.

Keywords

Cladocera remains analysis Cladocera biogeography Paleolimnology 

Notes

Acknowledgments

The research of Lohja Lake was supported by the Estonian Science Foundation (Grant ETF8189). We express our gratitude to Prof. K. Tobolski and Dr. E. Zawisza for making the sediment from Charzykowskie Lake available to us for studies of Bosminidae subfossils. We also would like to thank A. Lonczak, Prof. K. Ballantine, and three anonymous reviewers for their valuable comments on the early draft of this paper.

References

  1. Alexander, M. L. & S. C. Hotchkiss, 2010. Bosmina remains in lake sediment as indicators of zooplankton community composition. Journal of Paleolimnology 43: 51–59.CrossRefGoogle Scholar
  2. Appleby, P. & F. Oldfield, 1978. The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5: 1–8.CrossRefGoogle Scholar
  3. Barańczuk, J. & D. Borowiak, 2010. Atlas of the zaborowski landscape park lakes. Limnological Research 6: 32–41.Google Scholar
  4. Bilska, M. & J. S. Mikulski, 1979. Analysis of the population of Bosminidae in the holocenic period of Lake Goplo. Acta Universitatis Nicolai Copernici Prace Limnologiczne 11: 47–70.Google Scholar
  5. Black, R. W. II & L. B. Slobodkin, 1987. What is cyclomorphosis? Freshwater Biology 18: 373–378.CrossRefGoogle Scholar
  6. Black, R. W., 1980. The genetic component of cyclomorphosis in Bosmina. In Kerfoot, W. C. (ed.), Evolution and Ecology of Zooplankton Communities. University Press of New England, Hanover, NH: 456–469.Google Scholar
  7. Black, R. W. & N. G. Hairston, 1983. Cyclomorphosis in Eubosmina longispina in a small north-American pond. Hydrobiologia 102: 61–67.CrossRefGoogle Scholar
  8. Błędzki, L. A., 1988. Cladoceran remains analysis in sediments of Lake Strażym (Brodnica Lake District). Acta Palaeobotanica 27: 311–317.Google Scholar
  9. Branstrator, D. K., 1998. Predicting diet composition from body length in the zooplankton predator Leptodora kindti. Limnology and Oceanography 43: 530–535.CrossRefGoogle Scholar
  10. Brooks, J. L. & S. I. Dodson, 1965. Predation, body size and composition of plankton. Science 150: 28–35.PubMedCrossRefGoogle Scholar
  11. Chang, K. H. & T. Hanazato, 2003. Seasonal and reciprocal succession and cyclomorphosis of two Bosmina species (Cladocera, Crustacea) co-existing in a lake: their relationship with invertebrate predators. Journal of Plankton Research 25: 141–150.CrossRefGoogle Scholar
  12. Davidson, T. A., H. Bennion, E. Jeppesen, G. H. Clarke, C. D. Sayer, D. Morley, B. V. Odgaard, P. Rasmussen, R. Rawcliffe, J. Salgado, G. L. Simpson & S. L. Amsinck, 2011. The role of cladocerans in tracking long-term change in shallow lake trophic status. Hydrobiologia 676: 299–315.CrossRefGoogle Scholar
  13. De Stasio, B. Jr., T. E. Howard, R. Hanson & R. W. Black, 1990. Cyclomorphosis in Eubosmina species in New England lakes, USA. Verhandlung fur Theoretische und Angewandte Limnologie 24: 481–486.Google Scholar
  14. Faustova, M., V. Sacherova, J. E. Svensson & D. J. Taylor, 2011. Radiation of European Eubosmina (Cladocera) from Bosmina (E.) longispina-concordance of multipopulation molecular data with paleolimnology. Limnology and Oceanography 56: 440–450.CrossRefGoogle Scholar
  15. Faustova, M., V. Sacherova, H. Sheets, J. E. Svensson & D. J. Taylor, 2010. Coexisting cyclic parthenogena comprise a Holocene species flock in Eubosmina. Plos One 5: e11623, 1–e11623, 8.CrossRefGoogle Scholar
  16. Flößner, D., 1972. Krebstiere, Crustacea, Kiemen und Blattfüssler, Branchiopoda, Fischläuse, Branchiura. G. Fisher, Jena: 1–501.Google Scholar
  17. Frey, D. G., 1962. Cladocera from the Eemian interglacial of Denmark. Journal of Paleontology 36: 1133–1155.Google Scholar
  18. Frey, D. G., 1964. Remains of animals in quaternary lake and bog sediments and their interpretation. Archiv fur Hydrobiologie: Beihefte/Ergebnisse der Limnologie 2: 1–114.Google Scholar
  19. Frey, D. G., 1986. Cladocera analysis. In Berglund, B. E. (ed.), Handbook of Holocene Paleolimnology and Paleohydrology, IGCP. Wiley, New York: 667–692.Google Scholar
  20. Gąsiorowski, M. & K. Szeroczyńska, 2004. Abrupt changes in Bosmina (Cladocera, Crustacea) assemblages during the history of the Ostrowite Lake (northern Poland). Hydrobiologia 526: 137–144.CrossRefGoogle Scholar
  21. Gliwicz, Z. M., A. Jawinski & M. Pawłowicz, 2004. Cladoceran densities, day-to-day variability in food selection by smelt, and the birth-rate-compensation hypothesis. Hydrobiologia 526: 171–186.CrossRefGoogle Scholar
  22. Haney, R. A. & D. J. Taylor, 2003. Testing paleolimnological predictions with molecular data: the origins of Holarctic Eubosmina. Journal of Evolutionary Biology 16: 871–882.PubMedCrossRefGoogle Scholar
  23. Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.CrossRefGoogle Scholar
  24. Hellsten, M., R. Lagergren & J. Stenson, 1999. Can extreme morphology in Bosmina reduce predation risk from Leptodora? An experimental test. Oecologia 118: 23–28.PubMedCrossRefGoogle Scholar
  25. Hellsten, M. E. & J. A. E. Stenson, 1995. Cyclomorphosis in a population of Bosmina coregoni. Hydrobiologia 312: 1–9.CrossRefGoogle Scholar
  26. Hellsten, M. E. & P. Sundberg, 2000. Genetic variation in two sympatric European populations of Bosmina spp. (Cladocera) tested with RAPD markers. Hydrobiologia 421: 157–164.CrossRefGoogle Scholar
  27. Hofmann, W., 1977. Bosmina (Eubosmina) populations of the Großer Segebergersee during late glacial and postglacial times. Archiv fur Hydrobiology 80: 349–359.Google Scholar
  28. Hofmann, W., 1978. Bosmina (Eubosmina) populations of the Großer Plöner see and Schöhsee lakes during late-glacial and postglacial times. Polskie Archiwum Hydrobiologii 25: 167–176.Google Scholar
  29. Hofmann, W., 1984a. Morphological variation in a late glacial population of Bosmina longispina Leydig (Crustacea, Cladocera) from thr Lobsigensee (Swiss Plateau). Studies in the Late-Qiaternary of Lobsigendee, Schweizerische Zeitschrift für Hydrologie 46: 139–146.Google Scholar
  30. Hofmann, W., 1984b. Postglacial morphological variation in Bosmina longispina Leidig (Crustacea, Cladocera) from the Großer Plöner See (North Germany) and its taxonomic implications. Zeitschrift fur Zoologische Systematik und Evolutionsforschung 22: 294–301.CrossRefGoogle Scholar
  31. Hofmann, W., 1986. On the relationship between the Bosmina taxa coregoni and thersites (Cladocera), as indicated by subfossil remains. Hydrobiologia 143: 119–121.CrossRefGoogle Scholar
  32. Hofmann, W., 1987a. Stratigraphy of Cladocera (Crustacea) and Chironomidae (Insecta, Diptera) in 3 sediment cores from the central Baltic Sea as related to paleo-salinity. Internationale Revue der Gesamten Hydrobiologie 72: 97–106.CrossRefGoogle Scholar
  33. Hofmann, W., 1987b. The late Pleistocene/Holocene and recent Bosmina (Eubosmina) fauna (Crustacea: Cladocera) of the pre-alpine Starnberger see (FRG). Journal of Plankton Research 9: 381–394.CrossRefGoogle Scholar
  34. Hofmann, W., 1991. The late-glacial/holocene Bosmina (Eubosmina) Fauna of Lake Constance (Untersee) (F.R.G.) – traces of introgressive hybridization. Hydrobiologia 225: 81–85.CrossRefGoogle Scholar
  35. Hofmann, W., 1994. Morphologische variation der plankton Cladocere Bosmina (Eubosmina) im Selenter See. Faunistisch Ökologische Mitteilungen 6: 479–485.Google Scholar
  36. Hofmann, W., 1998. The response of Bosmina (Eubosmina) to eutrophication of Upper Lake constance: the subfossil record. Ergebnisse der Limnologie 53: 275–283.Google Scholar
  37. Hofmann, W., 1999. Holocene succession and morphological variation of the Bosmina (Eubosmina) taxa of the Plußsee (northern Germany). Ergebnisse der Limnologie 54: 359–372.Google Scholar
  38. Hofmann, W., 2001. Late-Glacial/Holocene succession of the chironomid and cladoceran fauna of the Soppensee (Central Switzerland). Journal of Paleolimnology 25: 411–420.CrossRefGoogle Scholar
  39. Hofmann, W. & K. Winn, 2000. The littorina transgression in the Western Baltic Sea as indicated by subfossil Chironomidae (Diptera) and Cladocera (Crustacea). International Review of Hydrobiology 85: 267–291.CrossRefGoogle Scholar
  40. Jeppesen, E., P. Leavitt, L. DeMeester & J. P. Jensen, 2001. Functional ecology and palaeolimnology: using cladoceran remains to reconstruct anthropogenic impact. Trends in Ecology and Evolution 16: 191–198.PubMedCrossRefGoogle Scholar
  41. Kerfoot, W. C., 1981. Long-term replacement cycles in cladoceran communities: a history of predation. Ecology 62: 216–233.CrossRefGoogle Scholar
  42. Kessel, H., 1961. Balti mere arenemisest Eesti NSV territooriumil holotseenis. Geoloogia Instituudi uurimused 7: 167–185.Google Scholar
  43. Kořínek, V., V. Sacherova & L. Havel, 1997. Subgeneric differences in head shield and ephippia ultrastructure within the genus Bosmina Baird (Crustacea, Cladocera). Hydrobiologia 360: 13–23.CrossRefGoogle Scholar
  44. Kotov, A. A., 1996. Morphology and postembryonic development of males and females of Bosmina longispina Leydig (Crustacea, Anomopoda) from a North Iceland population. Hydrobiologia 341: 187–196.CrossRefGoogle Scholar
  45. Kotov, A. A., S. Ishida & D. J. Taylor, 2009. Revision of the genus Bosmina Baird, 1845 (Cladocera: Bosminidae), based on evidence from male morphological characters and molecular phylogenies. Zoological Journal of the Linnean Society 156: 1–51.CrossRefGoogle Scholar
  46. Lieder, U., 1983a. Revision of the genus Bosmina Baird, 1845 (Crustacea, Cladocera). Internationale Revue der Gesamten Hydrobiologie 68: 121–139.CrossRefGoogle Scholar
  47. Lieder, U., 1983b. Die Arten der Untergattung Eubosmina Seligo, 1900 (Crustacea, Cladocera, Bosminidae). Mitteilungen aus dem Zoologischen Museum in Berlin 59: 195–292.Google Scholar
  48. Lieder, U., 1996. Crustacea Cladocera Bosminidae. Gustav Fisher Verlag, Stuttgart-Hohenheim: 1–80.Google Scholar
  49. Mäemets, A., 1968. Eesti Järved. Valgus, Tallinn.Google Scholar
  50. Marksoo, P., 2008. Eesti pinnaveekogude ökoloogiline seisund 2004–2008. Keskonnaministeerium, Tallinn.Google Scholar
  51. Milecka, K., G. Kowalewski & K. Szeroczyńska, 2011. Climate-related changes during the Late Glacial and early Holocene in northern Poland, as derived from the sediments of Lake Sierzywk. Hydrobiologia 676: 187–202.CrossRefGoogle Scholar
  52. Milecka, K. & K. Szeroczyńska, 2005. Changes in macrophytic flora and planktonic organisms in Lake Ostrowite, Poland, as a response to climatic and trophic fluctuations, Holocene 15: 74–84.CrossRefGoogle Scholar
  53. Nilssen, J. P., 1984. An ecological jig-saw puzzle: reconstructing aquatic biogeography and pH in an acidified region. Institute of Freshwater Research Drottningholm Report: 138–147.Google Scholar
  54. Nilssen, J. P., G. Halvorsen & J. G. Melaen, 1980. Seasonal divergence of Bosmina morphs. Internationale Revue der Gesamten Hydrobiologie 65: 507–516.CrossRefGoogle Scholar
  55. Nilssen, J. P. & P. Larsson, 1980. The systematical position of the most common fennoscandian Bosmina (Eubosmina). Zeitschrift fur Zoologische Systematik und Evolutionsforschung 18: 62–68.CrossRefGoogle Scholar
  56. Norman, A. M. & G. S. Brady, 1867. A monograph of the British Entomostarca belonging to the familiers Bosminidae, Macrothricidae and Lynceidae. Natural History Transactions of Northumberland and Durham 1: 354–408.Google Scholar
  57. Patalas, K., 1954. Zespoły skorupiaków pelagicznych 28 jezior pomorskich. Ekologia Polska 2: 61–88.Google Scholar
  58. Patalas, K., 1963a. Pionowe rozmieszczenie skorupiaków planktonowych w morfologicznie różnych jeziorach okolic Węgorzewa. Roczniki Nauk Rolniczych B 82: 195–207.Google Scholar
  59. Patalas, K., 1963b. Sezonowe zmiany w pelagicznym planktonie skorupiakowym sześciu jezior okolic Węgorzewa. Roczniki Nauk Rolniczych B 82: 209–234.Google Scholar
  60. Sanford, P. R., 1993. Bosmina longirostris antennule morphology as an indicator of intensity of planktivory by fishes. Bulletin of Marine Science 53: 216–227.Google Scholar
  61. Szeroczynska, K., 1998. Palaeolimnological investigations in Poland based on Cladocera (Crustacea). Palaeogeography, Palaeoclimatology, Palaeoecology 140: 335–345.CrossRefGoogle Scholar
  62. Szeroczyńska, K. & K. Sarmaja-Korjonen, 2007. Atlas of Subfossil Cladocera from Central and Northern Europe. Friends of the Lower Vistula Society, Świecie.Google Scholar
  63. Szeroczyńska, K. & E. Zawisza, 2011. Records of the 8200 cal BP cold event reflected in the composition of subfossil Cladocera in the sediments of three lakes in Poland. Quaternary International 233: 185–193.CrossRefGoogle Scholar
  64. Taylor, D. J., C. R. Ishikane & R. A. Haney, 2002. The systematics of Holarctic bosminids and a revision that reconciles molecular and morphological evolution. Limnology and Oceanography 47: 1486–1495.CrossRefGoogle Scholar
  65. Telesh, I. V., L. Postel, L. Heerkloss, E. Mironova & S. Skarlato, 2008. Zooplankton of the Open Baltic Sea: Atlas. BMB Publication No. 20, Meereswissenschaftliche Berichte, Warnemünde 73: 1–151.Google Scholar
  66. Tobolski, K., 2010. Preliminary information on the palynological research on sediments of Lake Charzykowskie (Zaborski Landscape Park). Studia Limnologica et Telmatologica 4: 29–34.Google Scholar
  67. Wolska, M. & W. G. Piasecki, 2007. Seasonality of zooplankton changes phenomena observed in the estuarine part of the Oder River. Limnological Review 7: 117–121.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Leszek A. Błędzki
    • 1
    Email author
  • Krystyna Szeroczyńska
    • 2
  • Egle Puusepp
    • 3
  1. 1.Mount Holyoke CollegeSouth HadleyUSA
  2. 2.Institute of Geological SciencesPolish Academy of SciencesWarsawPoland
  3. 3.Institute of EcologyTallinn UniversityTallinnEstonia

Personalised recommendations