, Volume 715, Issue 1, pp 63–76 | Cite as

Food quality of mixed bacteria–algae diets for Daphnia magna

  • Heike M. FreeseEmail author
  • Dominik Martin-Creuzburg


Bacteria can comprise a large fraction of seston in aquatic ecosystems and can therefore significantly contribute to diets of filter-feeding zooplankton. To assess the effect of three heterotrophic bacteria (Flavobacterium sp., Pseudomonas sp. and Escherichia coli) on survival, growth and egg production of juvenile Daphnia magna during six-day growth experiments, five ratios of bacteria–Scenedesmus obliquus mixtures were fed. Potential growth-limiting effects mediated by essential biochemicals were assessed upon supplementation of pure bacterial diets with a sterol (cholesterol) or a polyunsaturated fatty acid (EPA). Pure bacterial diets always had detrimental effects on Daphnia. However, cholesterol supplementation of Flavobacterium sp. enhanced growth rates of Daphnia. Diets containing Pseudomonas impaired Daphnia growth even at low dietary proportions (20%), indicating their toxicity. In contrast, Daphnia grew at relative high dietary proportions of Flavobacterium sp. and E. coli (80–50%). In fact, diets containing small proportions of these heterotrophic bacteria (Flavobacterium ≤50%, E. coli 20%) even significantly increased Daphnia growth rates compared to pure algal diets, indicating a nutritional upgrading by these bacteria. Our results suggest that the relative contribution of bacteria and phytoplankton to total dietary carbon as well as their phylogenetic composition strongly influence Daphnia fitness and potentially other filter-feeding zooplankton under field conditions.


Flavobacterium sp. Pseudomonas sp. Escherichia coli Polyunsaturated fatty acids Sterols Scenedesmus 



We thank A. Wiese for technical assistance.


  1. Andersen, T. & D. O. Hessen, 1991. Carbon, nitrogen, and phosphorus content of freshwater zooplankton. Limnology and Oceanography 36: 807–814.CrossRefGoogle Scholar
  2. Azam, F., T. Fenchel, J. G. Field, J. S. Gray, L. A. Meyer-Reil & F. Thingstad, 1983. The ecological role of water-column microbes in the sea. Marine Ecology Progress Series 10: 257–263.CrossRefGoogle Scholar
  3. Biddanda, B. A., M. Ogdahl & J. Cotner, 2001. Dominance of bacterial metabolism in oligotrophic relative to eutrophic waters. Limnology and Oceanography 46: 730–739.CrossRefGoogle Scholar
  4. Brendelberger, H., 1991. Filter mesh size of Cladocerans predicts retention efficiency for bacteria. Limnology and Oceanography 36: 884–894.CrossRefGoogle Scholar
  5. Brett, M. & D. Müller-Navarra, 1997. The role of highly unsaturated fatty acids in aquatic foodweb processes. Freshwater Biology 38: 483–499.CrossRefGoogle Scholar
  6. Broderick, N. A., K. F. Raffa & J. Handelsman, 2006. Midgut bacteria required for Bacillus thuringiensis insecticidal activity. Proceedings of the National Academy of Sciences of the United States of America 103: 15196–15199.PubMedCrossRefGoogle Scholar
  7. Cole, J. J., S. R. Carpenter, M. L. Pace, M. C. Van de Bogert, J. L. Kitchell & J. R. Hodgson, 2006. Differential support of lake food webs by three types of terrestrial organic carbon. Ecology Letters 9: 558–568.PubMedCrossRefGoogle Scholar
  8. D’Agostino, A. S. & L. Provasoli, 1970. Dixenic culture of Daphnia magna, Straus. The Biological Bulletin 139: 485–494.PubMedCrossRefGoogle Scholar
  9. Degans, H., E. Zollner, K. Van der Gucht, L. De Meester & K. Jürgens, 2002. Rapid Daphnia-mediated changes in microbial community structure: an experimental study. FEMS Microbiology Ecology 42: 137–149.PubMedCrossRefGoogle Scholar
  10. Deines, P. & P. Fink, 2011. The potential of methanotrophic bacteria to compensate for food quantity or food quality limitations in Daphnia. Aquatic Microbial Ecology 65: 197–206.CrossRefGoogle Scholar
  11. Deines, P., C. Matz & K. Jürgens, 2009. Toxicity of violacein-producing bacteria fed to bacterivorous freshwater plankton. Limnology and Oceanography 54: 1343–1352.CrossRefGoogle Scholar
  12. DeMott, W. R., 1998. Utilization of a cyanobacterium and a phosphorus-deficient green alga as complementary resources by daphnids. Ecology 79: 2463–2481.CrossRefGoogle Scholar
  13. Desvilettes, C. H., G. Bourdier, C. H. Amblard & B. Barth, 1997. Use of fatty acids for the assessment of zooplankton grazing on bacteria, protozoans and microalgae. Freshwater Biology 38: 629–637.CrossRefGoogle Scholar
  14. Donderski, W. & B. Nowacka, 1992. Production of B-vitamins by planktonic bacteria isolated from the mesotrophic Lake Jasne. Journal of Islamic Academy of Sciences 5: 32–38.Google Scholar
  15. Eiler, A. & S. Bertilsson, 2007. Flavobacteria blooms in four eutrophic lakes: Linking population dynamics of freshwater bacterioplankton to resource availability. Applied and Environmental Microbiology 73: 3511–3518.PubMedCrossRefGoogle Scholar
  16. Glöckner, F. O., E. Zaichikov, N. Belkova, L. Denissova, J. Pernthaler, A. Pernthaler & R. Amann, 2000. Comparative 16S rRNA analysis of lake bacterioplankton reveals globally distributed phylogenetic clusters including an abundant group of actinobacteria. Applied and Environmental Microbiology 66: 5053–5065.PubMedCrossRefGoogle Scholar
  17. Gophen, M. & W. Geller, 1984. Filter mesh size and food particle uptake by Daphnia. Oecologia 64: 408–412.CrossRefGoogle Scholar
  18. Greenberg, A. E., R. R. Trussell & L. S. Clesceri, 1985. Standard methods for the examination of water and wastewater. American Public Health Association, Washington, DC.Google Scholar
  19. Grieneisen, M. L., 1994. Recent advances in our knowledge of ecdysteroid biosynthesis in insects and crustaceans. Insect Biochemistry and Molecular Biology 24: 115–132.CrossRefGoogle Scholar
  20. Gross, H. & J. E. Loper, 2009. Genomics of secondary metabolite production by Pseudomonas spp. Natural Product Reports 26: 1408–1446.PubMedCrossRefGoogle Scholar
  21. Hamelin, K., G. Bruant, A. El Shaarawi, S. Hill, T. A. Edge, J. Fairbrother, J. Harel, C. Maynard, L. Masson & R. Brousseau, 2007. Occurrence of virulence and antimicrobial resistance genes in Escherichia coli isolates from different aquatic ecosystems within the St. Clair River and Detroit River areas, Applied and Environmental Microbiology 73: 477–484.CrossRefGoogle Scholar
  22. Harrison, P. J., N. Khan, K. Yin, M. Saleem, N. Bano, M. Nisa, S. I. Ahmed, N. Rizvi & F. Azam, 1997. Nutrient and phytoplankton dynamics in two mangrove tidal creeks of the Indus River delta, Pakistan. Marine Ecology Progress Series 157: 13–19.CrossRefGoogle Scholar
  23. Hessen, D. O., P. J. Færøvig & T. Andersen, 2002. Light, nutrients, and P:C ratios in algae: grazer performance related to food quality and quantity. Ecology 83: 1886–1898.CrossRefGoogle Scholar
  24. Hessen, D. O., T. Andersen, P. Brettum & B. A. Faafeng, 2003. Phytoplankton contribution to sestonic mass and elemental ratios in lakes: implications for zooplankton nutrition. Limnology and Oceanography 48: 1289–1296.CrossRefGoogle Scholar
  25. Hilbi, H., S. S. Weber, C. Ragaz, Y. Nyfeler & S. Urwyler, 2007. Environmental predators as models for bacterial pathogenesis. Environmental Microbiology 9: 563–575.PubMedCrossRefGoogle Scholar
  26. Jürgens, K., 1994. Impact of Daphnia on planktonic microbial food webs—a review. Marine Microbial Food Webs 8: 295–324.Google Scholar
  27. Kainz, M., M. T. Arts & A. Mazumder, 2004. Essential fatty acids in the planktonic food web and their ecological role for higher trophic levels. Limnology and Oceanography 49: 1784–1793.CrossRefGoogle Scholar
  28. Karlsson, J., A. Jonsson, M. Meili & M. Jansson, 2003. Control of zooplankton dependence on allochthonous organic carbon in humic and clear-water lakes in northern Sweden. Limnology and Oceanography 48: 269–276.CrossRefGoogle Scholar
  29. LaLiberte, P. & D. J. Grimes, 1982. Survival of Escherichia coli in lake bottom sediment. Applied and Environmental Microbiology 43: 623–628.PubMedGoogle Scholar
  30. Langenheder, S. & K. Jürgens, 2001. Regulation of bacterial biomass and community structure by metazoan and protozoan predation. Limnology and Oceanography 46: 121–134.CrossRefGoogle Scholar
  31. Le Coadic, M., M. Simon, A. Marchetti, D. Ebert & P. Cosson, 2012. Daphnia magna, a host for evaluation of bacterial virulence. Applied and Environmental Microbiology 78: 593–595.PubMedCrossRefGoogle Scholar
  32. Martin-Creuzburg, D., A. Wacker & E. von Elert, 2005. Life history consequences of sterol availability in the aquatic keystone species Daphnia. Oecologia 144: 362–372.PubMedCrossRefGoogle Scholar
  33. Martin-Creuzburg, D., S. A. Westerlund & K. H. Hoffmann, 2007. Ecdysterold levels in Daphnia magna during a molt cycle: determination by radioimmunoassay (RIA) and liquid chromatography-mass spectrometry (LC-MS). General and Comparative Endocrinology 151: 66–71.PubMedCrossRefGoogle Scholar
  34. Martin-Creuzburg, D., E. von Elert & K. H. Hoffmann, 2008. Nutritional constraints at the cyanobacteria—Daphnia magna interface: the role of sterols. Limnology and Oceanography 53: 456–468.CrossRefGoogle Scholar
  35. Martin-Creuzburg, D., E. Sperfeld & A. Wacker, 2009. Colimitation of a freshwater herbivore by sterols and polyunsaturated fatty acids. Proceedings of the Royal Society B: Biological Sciences 276: 1805–1814.PubMedCrossRefGoogle Scholar
  36. Martin-Creuzburg, D., A. Wacker & T. Basen, 2010. Interactions between limiting nutrients: Consequences for somatic and population growth of Daphnia magna. Limnology and Oceanography 55: 2597–2607.CrossRefGoogle Scholar
  37. Martin-Creuzburg, D., B. Beck & H. M. Freese, 2011. Food quality of heterotrophic bacteria for Daphnia magna: evidence for a limitation by sterols. FEMS Microbiology Ecology 76: 592–601.PubMedCrossRefGoogle Scholar
  38. Matz, C. & S. Kjelleberg, 2005. Off the hook—how bacteria survive protozoan grazing. Trends in Microbiology 13: 302–307.PubMedCrossRefGoogle Scholar
  39. Matz, C., J. S. Webb, P. J. Schupp, S. Y. Phang, A. Penesyan, S. Egan, P. Steinberg & S. Kjelleberg, 2008. Marine biofilm bacteria evade eukaryotic predation by targeted chemical defense. PLoS ONE 3: e2744.PubMedCrossRefGoogle Scholar
  40. Mehdipour, N., M. Fallahi, G. Azari Takami, G. Vossoughi & A. Mashinchian, 2011. Freshwater green algae Chlorella sp. and Scenedesmus obliquus enriched with B group of vitamins can enhance fecundity of Daphnia magna. Iranian Journal of Science & Technology A2: 157–163.Google Scholar
  41. Millet, A. C. M. & J. J. Ewbank, 2004. Immunity in Caenorhabditis elegans. Current Opinion in Immunology 16: 4–9.PubMedCrossRefGoogle Scholar
  42. Newton, R. J., S. E. Jones, A. Eiler, K. D. McMahon & S. Bertilsson, 2011. A guide to the natural history of freshwater lake bacteria. Microbiology and Molecular Biology Reviews 75: 14–49.PubMedCrossRefGoogle Scholar
  43. Okuyama, H., Y. Orikasa, T. Nishida, K. Watanabe & N. Morita, 2007. Bacterial genes responsible for the biosynthesis of eicosapentaenoic and docosahexaenoic acids and their heterologous expression. Applied and Environmental Microbiology 73: 665–670.PubMedCrossRefGoogle Scholar
  44. Overmann, J., U. Fischer & N. Pfennig, 1992. A new purple sulfur bacterium from saline littoral sediments, Thiorhodotvibrio winogradskyi gen. nov. and sp. nov. Archives of Microbiology 157: 329–335.CrossRefGoogle Scholar
  45. Padmanabhan, V., G. Prabakaran, K. P. Paily & K. Balaraman, 2005. Toxicity of a mosquitocidal metabolite of Pseudomonas fluorescens on larvae & pupae of the house fly, Musca domestica. Indian Journal of Medical Research 121: 116–119.PubMedGoogle Scholar
  46. Parveen, B., J. P. Reveilliez, I. Mary, V. Ravet, G. Bronner, J. F. Mangot, I. Domaizon & D. Debroas, 2011. Diversity and dynamics of free-living and particle-associated betaproteobacteria and actinobacteria in relation to phytoplankton and zooplankton communities. FEMS Microbiology Ecology 77: 461–476.PubMedCrossRefGoogle Scholar
  47. Pearce, D. A., C. J. van der Gast, K. Woodward & K. K. Newsham, 2005. Significant changes in the bacterioplankton community structure of a maritime Antarctic freshwater lake following nutrient enrichment. Microbiology 151: 3237–3248.PubMedCrossRefGoogle Scholar
  48. Perga, M. E., M. Kainz, B. Matthews & A. Mazumder, 2006. Carbon pathways to zooplankton: insights from the combined use of stable isotope and fatty acid biomarkers. Freshwater Biology 51: 2041–2051.CrossRefGoogle Scholar
  49. Pernthaler, J., E. Zollner, F. Warnecke & K. Jürgens, 2004. Bloom of filamentous bacteria in a mesotrophic lake: identity and potential controlling mechanism. Applied and Environmental Microbiology 70: 6272–6281.PubMedCrossRefGoogle Scholar
  50. Persson, J., M. W. Wojewodzic, D. O. Hessen & T. Andersen, 2011. Increased risk of phosphorus limitation at higher temperatures for Daphnia magna. Oecologia 165: 123–129.PubMedCrossRefGoogle Scholar
  51. Peters, R. H. & R. de Bernardi, 1987. Daphnia. Memorie dell’Istituto Italiano di Idrobiologia 45: 1–502.Google Scholar
  52. Rappe, M. S. & S. J. Giovannoni, 2003. The uncultured microbial majority. Annual Review of Microbiology 57: 369–394.PubMedCrossRefGoogle Scholar
  53. Russell, N. J. & D. S. Nichols, 1999. Polyunsaturated fatty acids in marine bacteria—a dogma rewritten. Microbiology 145: 767–779.PubMedCrossRefGoogle Scholar
  54. Schouten, S., J. P. Bowman, W. I. C. Rijpstra & J. S. S. Damste, 2000. Sterols in a psychrophilic methanotroph, Methylosphaera hansonii. FEMS Microbiology Letters 186: 193–195.PubMedCrossRefGoogle Scholar
  55. Simon, M., B. C. Cho & F. Azam, 1992. Significance of bacterial biomass in lakes and the ocean—comparison to phytoplankton biomass and biogeochemical implications. Marine Ecology Progress Series 86: 103–110.CrossRefGoogle Scholar
  56. Sperfeld, E., D. Martin-Creuzburg & A. Wacker, 2012. Multiple resource limitation theory applied to herbivorous consumers: Liebig’s minimum rule vs. interactive co-limitation. Ecology Letters 15: 142–150.PubMedCrossRefGoogle Scholar
  57. Sterner, R. W., 1997. Modelling interactions of food quality and quantity in homeostatic consumers. Freshwater Biology 38: 473–481.CrossRefGoogle Scholar
  58. Taipale, S., P. Kankaala & R. I. Jones, 2007. Contributions of different organic carbon sources to Daphnia in the pelagic foodweb of a small polyhumic lake: results from mesocosm (DIC)-C-13-additions. Ecosystems 10: 757–772.CrossRefGoogle Scholar
  59. Taipale, S., P. Kankaala, M. Tiirola & R. I. Jones, 2008. Whole-lake dissolved inorganic C-13 additions reveal seasonal shifts in zooplankton diet. Ecology 89: 463–474.PubMedCrossRefGoogle Scholar
  60. Taipale, S., P. Kankaala, H. Hamalainen & R. I. Jones, 2009. Seasonal shifts in the diet of Lake Zooplankton revealed by phospholipid fatty acid analysis. Freshwater Biology 54: 90–104.CrossRefGoogle Scholar
  61. Taipale, S. J., M. J. Kainz & M. T. Brett, 2011. Diet-switching experiments show rapid accumulation and preferential retention of highly unsaturated fatty acids in Daphnia. Oikos 120: 1674–1682.CrossRefGoogle Scholar
  62. Taipale, S. J., M. T. Brett, K. Pulkkinen & M. J. Kainz, 2012. The influence of bacteria-dominated diets on Daphnia magna somatic growth, reproduction, and lipid composition, FEMS Microbiology Ecology. doi: 10.1111/j.1574-6941.2012.01406.x.
  63. Vadstein, O., 2000. Heterotrophic, planktonic bacteria and cycling of phosphorus—phosphorus requirements, competitive ability, and food web interactions. In Schink, B. (ed.), Advances in Microbial Ecology, Vol. 16. Kluwer, New York: 115–167.CrossRefGoogle Scholar
  64. Van der Gucht, K., T. Vandekerckhove, N. Vloemans, S. Cousin, K. Muylaert, K. Sabbe, M. Gillis, S. Declerk, L. De Meester & W. Vyverman, 2005. Characterization of bacterial communities in four freshwater lakes differing in nutrient load and food web structure. FEMS Microbiology Ecology 53: 205–220.PubMedCrossRefGoogle Scholar
  65. Volkman, J. K., 2003. Sterols in microorganisms. Applied Microbiology and Biotechnology 60: 495–506.PubMedGoogle Scholar
  66. Vrede, T., T. Andersen & D. O. Hessen, 1999. Phosphorus distribution in three crustacean zooplankton species. Limnology and Oceanography 44: 225–229.CrossRefGoogle Scholar
  67. Wenzel, A., A.-K. Bergström, M. Jansson & T. Vrede, 2012. Survival, growth and reproduction of Daphnia galeata feeding on single and mixed Pseudomonas and Rhodomonas diets. Freshwater Biology 57: 835–846.CrossRefGoogle Scholar
  68. Zwart, G., B. C. Crump, M. P. K. V. Agterveld, F. Hagen & S. K. Han, 2002. Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquatic Microbial Ecology 28: 141–155.CrossRefGoogle Scholar
  69. Zwisler, W., N. Selje & M. Simon, 2003. Seasonal patterns of the bacterioplankton community composition in a large mesotrophic lake. Aquatic Microbial Ecology 31: 211–225.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  1. 1.Department of Biology, Microbial EcologyUniversity of KonstanzKonstanzGermany
  2. 2.Microbial Ecology and Diversity ResearchLeibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und ZellkulturenBraunschweigGermany
  3. 3.Limnological InstituteUniversity of KonstanzKonstanzGermany

Personalised recommendations