Skip to main content

Advertisement

Log in

Sources of uncertainty in estimation of eelgrass depth limits

  • WATER BODIES IN EUROPE
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In coastal areas seagrasses have considerable ecological importance and respond to eutrophication pressures. Seagrasses have, therefore, become an important parameter for assessing ecological status of marine water bodies. In this study we analyzed the sources of uncertainty associated with the monitoring of the maximum depth limit of eelgrass (Zostera marina). Based on a long-term marine monitoring of eelgrass depth limit in Danish coastal waters we estimated the uncertainty contribution of years, divers, transects, and replicates in water bodies and their sub-areas. For all these components the absolute uncertainty increased with the maximum depth limit. We used either a Spheric or a Gaussian function to describe the relationship between uncertainty and the maximum depth limit for each variable. This parameterization of the depth-specific uncertainty allowed estimation of the total variance associated with monitoring, which can be used to evaluate monitoring designs. The variance components were included in a time budget for optimizing eelgrass monitoring. With a maximum time limit of 100 or 200 h allocated for monitoring, the design that resulted in the lowest variance of the estimated maximum depth limit used 2 or 3 divers, respectively, and involved 2 or 3 years of monitoring and 4–8 transects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Benedetti-Cecchi, L., L. Airoldi, M. Abbiati & F. Cinelli, 1996. Estimating the abundance of benthic invertebrates: a comparison of producers and variability between observers. Marine Ecology Progress Series 138: 93–101.

    Article  Google Scholar 

  • Carstensen, J., 2007. Statistical principles for ecological status classification of Water Framework Directive monitoring data. Marine Pollution Bulletin 55: 3–15.

    Article  PubMed  CAS  Google Scholar 

  • Carstensen, J., D. Krause-Jensen, S. Markager, K. Timmermann & J. Windolf, 2012. Water clarity and eelgrass responses to nitrogen reductions in the eutrophic Skive Fjord, Denmark. Hydrobiologia. doi:10.1007/s10750-012-1266-y.

  • Clarke, R., 2012. Effects of sampling and other uncertainty on confidence of confidence using new spatial and temporal variability data from UK rivers macroinvertebrates. Hydrobiologia. doi:10.1007/s10750-012-1245-3

  • Cloern, J. E., 2001. Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series 210: 223–253.

    Article  CAS  Google Scholar 

  • Dennison, W. C., 1987. Effects of light on seagrass photosynthesis, growth and depth distribution. Aquatic Botany 27: 15–26.

    Article  Google Scholar 

  • Duarte, C. M., N. Marbà, D. Krause-Jensen & M. Sánchez-Camacho, 2007. Testing the predictive power of seagrass depth limit models. Estuaries and Coasts 30: 652–656.

    Google Scholar 

  • Fonseca, M. S., P. E. Whitfield, N. M. Kelly & S. S. Bell, 2002. Modelling seagrass landscape pattern and associated ecological attributes. Ecological Applications 12: 218–237.

    Article  Google Scholar 

  • Hansen, J. W. & D. L. J. Petersen (eds), 2011. Marine Areas 2010. NOVANA. Status and Trends in Environmental and Nature Quality (in Danish). Aarhus University, DCE—National Center for the Environment and Energy: 120 pp. Scientific report no. 6. http://www2.dmu.dk/Pub/SR6.pdf.

  • Hemminga, M. A. & C. M. Duarte, 2000. Seagrass Ecology. Cambridge University Press, Cambridge.

    Book  Google Scholar 

  • Holmer, M. & E. J. Bondgaard, 2001. Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events. Aquatic Botany 70: 29–38.

    Article  CAS  Google Scholar 

  • Koch, E. M., 2001. Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24: 1–17.

    Article  Google Scholar 

  • Krause-Jensen, D., A. L. Middelboe, K. Sand-Jensen & P. B. Christensen, 2000. Eelgrass, Zostera marina, growth along depth gradients: upper boundaries of the variation as a powerful predictive tool. Oikos 91: 233–244.

    Article  Google Scholar 

  • Krause-Jensen, D., M. F. Pedersen & C. Jensen, 2003. Regulation of Eelgrass (Zostera marina) Cover along depth gradients in Danish coastal waters. Estuaries 26: 866–877.

    Article  Google Scholar 

  • Krause-Jensen, D., J. Carstensen, S. L. Nielsen, T. Dalsgaard, P. B. Christensen, H. Fossing & M. B. Rasmussen, 2011. Sea bottom characteristics affect depth limits of eelgrass Zostera marina. Marine Ecology Progress Series 425: 91–102.

    Article  Google Scholar 

  • Krause-Jensen, D., S. Markager & T. Dalsgaard, 2012. Benthic and pelagic primary production in different nutrient regimes. Estuaries and Coasts 35: 527–545.

    Article  CAS  Google Scholar 

  • Krause-Jensen, D. & M. B. Rasmussen, 2009. Historical Distribution of Eelgrass in Danish Coastal Waters (in Danish), National Environmental Research Institute, Aarhus University. Scientific report No. 755: 38 pp. http://www.dmu.dk/Pub/FR755.pdf.

  • Marbà, N., D. Krause-Jensen, T. Alcoverro, S. Birk, A. Pedersen, J. M. Neto, S. Orfanidis, J. M. Garmendia, I. Muxika, A. Borja, K. Dencheva, & C. M. Duarte, 2012. Diversity of European seagrass indicators: patterns within and across regions. Hydrobiologia. doi:10.1007/s10750-012-1403-7.

  • Nielsen, S. L., K. Sand-Jensen, J. Borum & O. Geertz-Hansen, 2002. Depth colonization of eelgrass (Zostera marina) and macroalgae as determined by water transparency in Danish coastal waters. Estuaries 25: 1025–1032.

    Article  Google Scholar 

  • Olesen, B., 1996. Regulation of light attenuation and eelgrass Zostera marina depth distribution in a Danish embayment. Marine Ecology Progress Series 134: 187–194.

    Article  Google Scholar 

  • Pedersen, T. M., K. Sand-Jensen, S. Markager & S. L. Nielsen, 2012. Optical changes in a eutrophic estuary during reduced nutrient loadings. Estuaries and Coasts (in press).

  • Pulido, C. & J. Borum, 2010. Eelgrass (Zostera marina) tolerance to anoxia. Journal of Experimental Marine Biology and Ecology 385: 8–13.

    Article  Google Scholar 

  • Ralph, P. J., M. J. Durako, S. Enriquez, C. J. Collier & M. A. Doblin, 2007. Impact of light limitation on seagrasses. Journal of Experimental Marine Biology and Ecology 350: 176–193.

    Article  Google Scholar 

  • Short, F. T. & D. M. Burdick, 1996. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries 19: 730–739.

    Article  Google Scholar 

  • Short, F. T., B. Polidoro, S. R. Livingstone, K. E. Carpenter, S. Bandeira, J. S. Bujang, H. P. Calumpong, T. J. B. Carruthers, R. G. Cole, W. C. Dennison, P. L. A. Erftemeijer, M. D. Fortes, A. S. Freeman, T. G. Jagtap, A. H. M. Kamal, G. A. Kendrick, K. W. Kenworthy, Y An La Nafie, I. M. Nasution, R. J. Orth, A. Prathep, J. C. Sanciangco, B. van Tussenbroek, S. G. Vergara, M. Waycott & J. C. Zieman, 2011. Extinction risk assessment of the world’s seagrass species. Biological Conservation 144: 1961–1971.

    Article  Google Scholar 

  • Stæhr, P. & J. Borum, 2011. Seasonal acclimation in metabolism reduces light requirements of eelgrass (Zostera marina). Journal of Experimental Marine Biology and Ecology 407: 139–146.

    Article  Google Scholar 

  • Valdemarsen, T., P. Canal-Verges, E. Kristensen, M. Holmer, M. D. Kristiansen & M. R. Flindt, 2010. Vulnerability of Zostera marina seedlings to physical stress. Marine Ecology Progress Series 418: 119–130.

    Article  Google Scholar 

  • Waycott, M., C. M. Duarte, T. J. B. Carrouthers, R. J. Orth, W. C. Dennison, S. Olyarnik, A. Calladine, J. W. Fourqurean, K. L. Heck Jr., A. R. Hughes, G. A. Kendrick, W. J. Kenworthy, F. T. Short & S. L. Williams, 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106: 12377–12381.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research is a contribution to the WISER project (Contract #FP7-226273), funded by the European Commission and to the WATERS project funded by the Swedish Environmental Protection Agency. We are grateful to the Danish Environmental Centers responsible for data collection under the Danish Nationwide Aquatic Monitoring and Assessment Program. We wish to thank two reviewers for helpful comment on an earlier version of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thorsten J. S. Balsby.

Additional information

Guest editors: C. K. Feld, A. Borja, L. Carvalho & D. Hering / Water bodies in Europe: integrative systems to assess ecological status and recovery

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balsby, T.J.S., Carstensen, J. & Krause-Jensen, D. Sources of uncertainty in estimation of eelgrass depth limits. Hydrobiologia 704, 311–323 (2013). https://doi.org/10.1007/s10750-012-1374-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1374-8

Keywords

Navigation