Skip to main content

Advertisement

Log in

Laboratory and microcosm experiments testing the toxicity of chlorinated hydrocarbons on a cyanobacterium strain (Synechococcus PCC 6301) and on natural phytoplankton assemblages

  • SHALLOW LAKE ECOSYSTEMS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

In the last few years, halogenated hydrocarbons have been detected in the soil, in the aquatic environment, in organisms, and even in drinking water. The toxic effects of three chlorinated aliphatic hydrocarbons (trichloroethylene, tetrachloroethylene and tetrachloroethane) were studied in laboratory experiments (using the cyanobacterium Synecococcus elongatus PCC 6301 as test organism) and in field-like circumstances (natural phytoplankton assemblages enclosed in microcosms). The results of the laboratory experiments showed that all of the tested compounds significantly inhibited the growth of the cultures within the first 4 h. Enzymatic changes of the treated cultures suggested that oxidative stress occured—all of the three compounds caused an increase in the activity of peroxidases and superoxide dismutase, and also increased the levels of lipid peroxidation. Observed changes in microcosms were comparable with the results of the laboratory experiments: the number of individuals and chlorophyll contents decreased in the treated assemblages. The elevated levels of peroxidation on the second day in the assemblages treated with tetrachloroethane and tetrachloroetylene suggest that oxidative stress could occur in field conditions. One of the most important findings is the decrease in species number. Our results showed that cryptomonads, some green algae species and the cyanobacterium Limnothrix gradually disappeared from the treated beakers during the experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Ando, T., S. Otsuka, M. Nishiyama, K. Senoo, M. M. Watanabe & S. Matsumoto, 2003. Toxic effects of dichlomethane and trichloroethylene on the growth of planktonic green algae, Chlorella vulgaris NIES227, Selenastrum capricornutum NIES35, and Volvulina steinii NIES545. Microbes and Environments 8: 43–46.

    Article  Google Scholar 

  • Bendall, D. S., J. M. Bowes, A. C. Stewart & M. E. Taylor, 1988. Oxygen-evolving photosystem II particles from Phormidium laminosum. In Packer, L. & A. N. Glazer (eds), Cyanobacteria, Vol. 167, Meth. Enzymol., 272–280. Academic Press, Inc., San Diego.

    Google Scholar 

  • Berglund, O., P. Larsson, G. Ewald & L. Okla, 2001. Influence of trophic status on PCB distribution in lake sediments and biota. Environmental Pollution 113: 199–210.

    Article  PubMed  CAS  Google Scholar 

  • Brack, W. & H. Rottler, 1994. Toxicity testing of highly volatile chemicals with green algae—a new assay. Environmental Science & Pollution Research 1: 223–228.

    Article  CAS  Google Scholar 

  • Bradford, M. M., 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry 72: 248–254.

    Article  PubMed  CAS  Google Scholar 

  • Bringmann, G. & R. Kühn, 1978. Testing of substances for their toxicity thresholds. Model organisms Microcystis (Diplocystis) aeruginosa and Scenedesmus quadricauda. Mitteilungen Internationale Vereinigung für Theoretische und Angewandte Limnologie 21: 275–284.

    CAS  Google Scholar 

  • Bringmann, G. & R. Kühn, 1980. Comparison of the toxicity thresholds of water pollutants to bacteria, algae and protozoa in the cell multiplication inhibition test. Water Research 14: 231–241.

    Article  CAS  Google Scholar 

  • Cervini-Silva, J., 2003. Linear free-energy relationship analysis of the fate of chlorinated 1- and 2-carbon compounds by redox-manipulated smectite clay minerals. Environmental Toxicology & Chemistry 22: 2298–2305.

    Article  CAS  Google Scholar 

  • Chodola, G. R., N. Biswas, J. K. Bewtra, et al., 1989. Fate of selected volatile organic substances in aqueous environment. Canadian Journal of Water Pollution Research 24: 119–142.

    CAS  Google Scholar 

  • EPA, 1978. In-depth studies on health and environmental impacts on selected water pollutants, U.S. Environmental Protection Agency. Contract No. 68-01-4646, PB83-263665.

  • EPA, 1979. Identification of conventional pollutants. U.S. Environmental Protection Agency. Federal Register 44: 44501–44503

    Google Scholar 

  • European Standard EN 15204 2006. Water quality – guidance standard on the enumeration of phytoplankton using inverted microscopy (Utermöhl technique). European Commitee for Standardizationrue de Stassart, 36, Brussels.

  • Felföldy, L., 1987. A biológiai vízminősítés. Vízügyi Hidrobiológia 16. VGI, Budapest. 258.

    Google Scholar 

  • Ferguson, J. F. & J. M. Pietari, 2000. Anaerobic transformations and bioremediation of chlorinated solvents. Environmental Pollution 107: 209–215.

    Article  PubMed  CAS  Google Scholar 

  • Gavino, V. C., C. J. Dillard & A. L. Tappel, 1983. Lipid peroxidation in rat kidney and liver slices treated with halogenated hydrocarbons. Federation Proceedings 42: 812.

    Google Scholar 

  • González, J., F. G. Figueiras, M. Aranguren-Gassis, B. G. Crespo, E. Fernádez, X. A. G. Morán & M. Nieto-Cid, 2009. Effect of a simulated oil spill on natural assemblages of marine phytoplankton enclosed in microcosms. Estuarine, Coastal and Shelf Science 83: 265–276.

    Article  Google Scholar 

  • Halpert, J. & R. A. Neal, 1981. Cytochrome P-450 metabolism of 1,1,2,2-tetrachloroethane to dichloroacetic acid in vitro. Biochemical Pharmacology 30: 1366–1368.

    Article  PubMed  CAS  Google Scholar 

  • Hohman, S. & W. H. Mager, 2003. Oxidative stress responses in yeast. In Hohmann, S. & P. Mager (eds), Yeast Stress Responses. Springer, Berlin

  • Hu, Z., Y. Liu, D. Li & A. Dauta, 2004. Growth and antioxidant system of the cyanobacterium Synechococcus elongatus in response to microcystin-RR. Hydrobiologia 534: 23–29.

    Article  Google Scholar 

  • Ikeda, M. & H. Ohtsuji, 1972. Comparative study of the excretion of Fujiwara reaction-positive substances in urine of humans and rodents given trichloro-or tetrachloro-derivatives of ethane and ethylene. British Journal of Industrial Medicine 29: 99–184.

    PubMed  CAS  Google Scholar 

  • Kuney, J. H., 1986. Chemcyclopedia, Vol. 5. American Chemical Society, Washington, DC. 116.

    Google Scholar 

  • Leighton Jr., D. T. & J. M. Calo, 1981. Distribution coefficients of chlorinated hydrocarbons in dilute air-water systems for groundwater contamination applications. Journal of Chemical and Engineering Data 26: 382–385.

    Article  CAS  Google Scholar 

  • Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using Canoco. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Lewis, R. J., 2001. Hawley’s Condensed Chemical Dictionary, 14th ed. Wiley, New York, NY. 1079.

    Google Scholar 

  • Lin, A. J., X. H. Zhang, M. M. Chen & Q. Cao, 2007. Oxidative stress and DNA damages induced by cadmium accumulation. Journal of Environmental Sciences—China 19: 596–602.

    Article  PubMed  CAS  Google Scholar 

  • Lorah, M. M. & M. A. Voytek, 2004. Degradation of 1,1,2,2-tetrachloroethane and accumulation of vinyl chloride in wetland sediment microcosms and in situ porewater: biogeochemical controls and associations with microbial communities. Journal of Contaminant Hydrology 70: 117–145.

    Article  PubMed  CAS  Google Scholar 

  • Lukavsky, J., S. Furnadzhieva & F. Dittrt, 2011. Toxicity of Trichloroethylene (TCE) on some algae and cyanobacteria. Bulletin of Environmental Contamination and Toxicology 86: 226–231.

    Article  PubMed  CAS  Google Scholar 

  • Mitoma, C., T. Steeger, S. E. Jackson, K. P. Wheeler, J. H. Rogers & H. A. Milman, 1985. Metabolic disposition study of chlorinated hydrocarbons in rat and mice. Drug and Chemical Toxicology 3: 183–194.

    Article  Google Scholar 

  • Parsons, F., P. R. Wood & J. Demarco, 1984. Transformation of tetrachloroethene and trichloroethene in microcosms and groundwater. Journal of the American Water Works Association 76: 56–59.

    CAS  Google Scholar 

  • Parsons, F., G. Barrio-Lage & R. Rice, 1985. Biotransformation of chlorinated organic solvents in static microcosms. Environmental Toxicology & Chemistry 4: 739–742.

    Article  CAS  Google Scholar 

  • Pearson, C. R. & G. McConnell, 1975. Chlorinated Cl and C2 hydrocarbons in the marine environment. Proceedings of the Royal Society of London [Biol] 189: 305–332.

  • Peng, J., J. K. Bewtra & N. Biswas, 1994. Volatilization of selected organic compounds from quiescent water. Journal of Environmental Engineering 120: 662–669.

    Article  Google Scholar 

  • Perelman, A., A. Uzan, D. Hacohen & R. Schwarz, 2004. Oxidative stress in Synechococcus sp. strain PCC 7942: various mechanisms for H2O2 detoxification with different physiological roles. Journal of Bacteriology 185(12): 3654–3660.

    Google Scholar 

  • Qian, H., X. Xu, W. Chen, H. Jiang, Y. Jin, W. Liu & Z. Fu, 2009. Allelochemical stress causes oxidative damage and inhibition of photosynthesis in Chlorella vulgaris. Chemosphere 75: 368–375.

    Article  PubMed  CAS  Google Scholar 

  • Roberts, P. V., M. N. Goltz & D. M. Mackay, 1986. A natural gradient experiment on solute transport in a sand aquifer. 3. Retardation estimates and mass balance for organic solutes. Water Resources Research 22: 2047–2058.

    Article  CAS  Google Scholar 

  • Rojickova-Padrtova, R. & B. Marsalek, 1999. Selection and sensitivity comparisons of algal species for toxicity testing. Chemosphere 38(14): 3329–3338.

    Article  CAS  Google Scholar 

  • Sano, M. & A. L. Tappel, 1990. Halogenated hydrocarbon and hydroperoxide induced lipid peroxidation in rat tissue slices. Journal of Agricultural and Food Chemistry 38: 437–441.

    Article  CAS  Google Scholar 

  • Shah, K., R. G. Kumar, S. Verma & R. S. Dubey, 2001. Effect of cadmium on lipid peroxidation, superoxide anion generation and activities of antioxidant enzymes in growing rice seedlings. Plant Science 161: 1135–1144.

    Article  CAS  Google Scholar 

  • Summons, R. E., L. L. Jahnke, J. M. Hope & G. A. Logan, 1999. 2-Methylhopanoids as biomarkers for cyanobacterial oxygenic photosynthesis. Nature 400: 554–557.

    Article  PubMed  CAS  Google Scholar 

  • ter Braak, C. J. F. & P. Šmilauer, 2002. CANOCO Reference Manual and CanoDraw for Windows User’s Guide: Software for Canonical Community Ordination (Version 4.5). Microcomputer Power, Ithaca, NY.

    Google Scholar 

  • Tadros, M. G., J. Philips, H. Patel & V. Pandiripally, 1994. Differential response of green algal species to solvents. Bulletin of Environmental Contamination and Toxicology 52(3): 333–337.

  • Thomas, R. G., 1990. Volatilization from water. In: Lyman W. J., W. F. Reehl & D. H. Rosenblatt (eds), Handbook of Chemical Property Estimation Methods. McGraw-Hill Book Co., New York, NY: 15–9 to 15–30.

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Verhandlungen des Internationalen Verein Limnologie 9: 113–118.

    Google Scholar 

  • van Wijngaarden, R. P. A., P. J. van den Brink, J. H. O. Voshaar & P. Leeuwangh, 1995. Ordination techniques for analysing response of biological communities to toxic stress in experimental ecosystems. Ecotoxicology 4: 61–77.

    Google Scholar 

  • Vassilakaki, M. & S. Pflugmacher, 2008. Oxidative stress response of Synechocystis sp. (PCC 6803) due to exposure to microcystin-LR and cell-free cyanobacterial crude extract containing microcystin-LR. Journal of Applied Phycology 20: 219–225.

    Article  CAS  Google Scholar 

  • Verma, S. & R. S. Dubey, 2003. Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science 645–655.

  • Verschueren, K., 1983. Handbook of Environmental Data on Organic Chemicals. Van Nostrand Reinhold Co., New York: 1131–l135.

  • Wakeham, S. G., A. C. Davis & J. L. Karas, 1983. Mesocosm experiments to determine the fate and persistence of volatile organic compounds in coastal seawater. Environmental Science & Technology 17: 611–617.

    Article  CAS  Google Scholar 

  • Wang, X., S. Harada, M. Watanabe, H. Koshikawa & K. Sato, 1996. Determination of bioconcentration potential of tetrachloroethylene in marine algae by 13C. Chemosphere 33: 865–877.

    Article  PubMed  CAS  Google Scholar 

  • Ward, G. S., A. J. Tolmsoff & S. R. Petrocell, 1986. Acute toxicity of trichloroethylene to saltwater organisms. Bulletin of Environmental Contamination and Toxicology 37: 830–836.

    Article  PubMed  CAS  Google Scholar 

  • Wilson, B. H., G. B. Smith & J. F. Rees, 1986. Biotransformations of selected alkylbenzenes and halogenated aliphatic hydrocarbons in methanogenic aquifer material: a microcosm study. Environmental Science and Technology 20: 997–1002.

    Article  PubMed  CAS  Google Scholar 

  • Yllner, S., 1971. Metabolism of 1,1,2,2-tetrachloroethane-14C in the mouse. Acta Pharmacologica et Toxicologica 29: 499–512.

    Article  PubMed  CAS  Google Scholar 

  • Zytner, R. G., N. Biswas & J. K. Bewtra, 1989. Volatilization of perchloroethylene from stagnant water and soil. In Bell, J. M. (ed.), Proceedings of the 43rd Industrial Waste Conference, Purdue University, May 10–12, 1988. Lewis Publishers, Inc., Chelsea, MI: 101–108.

    Google Scholar 

Download references

Acknowledgements

This study was supported by TÁMOP-4.2.2-08/1-2008-0012. We would like to thank László Papp, Director of the Botanical Garden, for allowing our experiments at the Garden Pond. The authors are thankful for the support of Bolyai János Postdoctoral Scholarship (Török, P.; Vasas, G.) and Hungarian Scientific Research Found PD 100192 (Török, P.) and K-81370 (Vasas, G.) during manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to István Bácsi.

Additional information

Guest editors: Zhengwen Liu, Bo-Ping Han and Ramesh D. Gulati / Conservation, management and restoration of shallow lake ecosystems facing multiple stressors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bácsi, I., Török, T., B-Béres, V. et al. Laboratory and microcosm experiments testing the toxicity of chlorinated hydrocarbons on a cyanobacterium strain (Synechococcus PCC 6301) and on natural phytoplankton assemblages. Hydrobiologia 710, 189–203 (2013). https://doi.org/10.1007/s10750-012-1364-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1364-x

Keywords