Hydrobiologia

, Volume 712, Issue 1, pp 105–116 | Cite as

Nutrient uptake in a stream affected by hydropower plants: comparison between stream channels and diversion canals

  • Oihana Izagirre
  • Alba Argerich
  • Eugènia Martí
  • Arturo Elosegi
FORM AND FUNCTION

Abstract

Small hydropower plants divert part of the water from wide and physically complex stream channels with active hyporheic areas to narrow and hydraulically simple concrete canals, and thus, might affect nutrient dynamics. We compared nutrient uptake in diversion canals and in stream channels in the Leitzaran Stream (Basque Country, northern Spain). We predicted that simple morphology in diversion canals will result in lower nutrient uptake in canals than in stream channels. Periphytic chlorophyll and biomass did not differ significantly between reach types. Water was significantly deeper and faster in canals than in stream channels, but the transient storage zone did not differ significantly between reach types. There were no significant differences between uptake length for neither phosphate nor ammonium between reach types. Uptake length in both stream channels and diversion canals decreased with discharge, in a pattern similar to that previously described for pristine rivers across the world. Uptake velocity and uptake rate for phosphate did not differ significantly between reach types, but in the case of ammonium both retention metrics were significantly larger in the diversion canals. Results suggest that although hydropower schemes have minor effects on nutrient retention, these depend on the proportion of flow diverted.

Keywords

Hydropower plant Stream Nitrogen Phosphorus Uptake Hydromorphology Water diversion 

References

  1. APHA, 1998. Standard Methods for the Examination of Water and Wastewater, 20th ed. American Public Health Association, Washington, DC.Google Scholar
  2. Argerich, A., E. Martí, F. Sabater, M. Ribot, D. von Schiller & J. L. Riera, 2008. Combined effects of leaf litter inputs and a flood on nutrient retention in a Mediterranean mountain stream during fall. Limnology and Oceanography 53: 631–641.CrossRefGoogle Scholar
  3. Armitage, P. D. & G. E. Petts, 1992. Biotic score and prediction to assess the effects of water abstractions on rivermacroinvertebrates for conservation purposes. Aquatic Conservation: Marine and Freshwater Ecosystems 2: 1–17.CrossRefGoogle Scholar
  4. Bencala, K. E., D. M. McKnight & G. W. Zellweger, 1987. Evaluation of natural tracers in an acidic and metal-rich stream. Water Resources Research 23: 827–836.CrossRefGoogle Scholar
  5. Biggs, B. J. F. & C. Kilroy, 2000. Stream Periphyton Monitoring Manual. New Zealand Ministry for the Environment/NIWA, Christchurch.Google Scholar
  6. Boatman, C. D. & J. W. Murray, 1982. Modeling exchangeable NH4+ adsorption in marine-sediments—process and controls of adsorption. Limnology and Oceanography 27: 99–110.CrossRefGoogle Scholar
  7. Boulton, A. J., S. Findlay, P. Marmonier, E. H. Stanley & H. M. Vallet, 1998. The functional significance of the hyporheic zone in streams and rivers. Annual Review of Ecology and Systematics 29: 59–81.CrossRefGoogle Scholar
  8. Butturini, A. & F. Sabater, 1998. Ammonium and phosphate retention in a Mediterranean stream: hydrological versus temperature control. Canadian Journal of Fisheries and Aquatic Sciences 55: 1938–1945.CrossRefGoogle Scholar
  9. Cardinale, B. J., 2011. Biodiversity improves water quality through niche partitioning. Nature 472: 86–89.PubMedCrossRefGoogle Scholar
  10. Doyle, M. W., E. H. Stanley & J. M. Harbor, 2003. Hydrogeomorphic controls of phosphorus retention in streams. Water Resources Research 39: 1147–1163.Google Scholar
  11. Elosegi, A., J. R. Díez & M. Mutz, 2010. Effects of hydromorphological integrity on biodiversity and functioning of river ecosystems. Hydrobiologia 657: 199–215.CrossRefGoogle Scholar
  12. Elosegi, A., L. Flores & J. R. Díez, 2011. The importance of local processes on habitat characteristics: a Basque stream case study. Limnetica 30: 183–196.Google Scholar
  13. Gooseff, M. N., R. O. Hall & J. L. Tank, 2007. Relating transient storage to channel complexity in streams of varying land use in Jackson Hole, Wyoming. Water Resources Research 43. doi:10.1029/2005WR004626.
  14. Government of Navarre, 2005. Estudio de determinación de índices bióticos en 87 puntos de los ríos de Navarra. Government of Navarre, Pamplona.Google Scholar
  15. Graf, W. L., 1999. Dam nation: a geographic census of American dams and their large-scale hydrologic impacts. Water Resources Research 35: 1305–1311.CrossRefGoogle Scholar
  16. Gücker, B. & I. G. Boëchat, 2004. Stream morphology controls ammonium retention in tropical headwaters. Ecology 85: 2818–2827.CrossRefGoogle Scholar
  17. Haggard, B. E. & D. E. Storm, 2003. Effect of leaf litter on phosphorus retention and hydrological properties at a first order stream in northeast Oklahoma, USA. Journal of Freshwater Ecology 18: 557–565.CrossRefGoogle Scholar
  18. Hall, R. O., E. S. Bernhardt & G. E. Likens, 2002. Relating nutrient uptake with transient storage in forested mountain streams. Limnology and Oceanography 47: 255–265.CrossRefGoogle Scholar
  19. Hart, D. R., P. J. Mulholland, E. R. Marzolf, D. L. DeAngelis & S. P. Hendricks, 1999. Relationships between hydraulic parameters in a small stream under varying flow and seasonal condition. Hydrological Processes 13: 1497–1510.CrossRefGoogle Scholar
  20. Hax, C. L. & S. W. Golladay, 1998. The effects of a man-made flow disturbance on macroinvertebrate communities of a north Texas prairie stream. American Midland Naturalist 139: 210–223.CrossRefGoogle Scholar
  21. Izagirre, O. & A. Elosegi, 2004. Environmental control of seasonal and inter-annual variations of periphytic biomass in a north Iberian stream. Annales de Limnologie 41: 35–46.CrossRefGoogle Scholar
  22. Jain, S. C., 2001. Open-channel Flow. Wiley, New York.Google Scholar
  23. Jin, H. S. & G. M. Ward, 2005. Hydraulic characteristics of a small Coastal Plain stream of the southeastern United States: effects of hydrology and season. Hydrological Processes 19: 4147–4160.CrossRefGoogle Scholar
  24. Kent, R., K. Belitz & C. A. Burton, 2005. Algal productivity and nitrate assimilation in an effluent dominated concrete lined stream. Journal American Water Resources Association 41: 1109–1128.CrossRefGoogle Scholar
  25. Knapp, C. W., W. K. Dodds, K. C. Wilson, J. M. O’Brien & D. W. Graham, 2009. Biogeography of denitrification genes in a highly homogenous urban stream. Environmental Science and Technology 43: 4273–4279.PubMedCrossRefGoogle Scholar
  26. Martí, E. & F. Sabater, 2009. Retención de nutrientes en ecosistemas fluviales. In Elosegi, A. & S. Sabater (eds), Conceptos y técnicas en ecología fluvial. Fundación BBVA, Bilbao.Google Scholar
  27. Martí, E., J. Aumatell, L. Godé, M. Poch & F. Sabater, 2004. Nutrient retention efficiency in streams receiving inputs from wastewater treatment plants. Journal of Environmental Quality 33: 285–293.PubMedCrossRefGoogle Scholar
  28. Murchie, K. J., K. P. E. Hair, C. E. Pullen, T. D. Redpath, H. R. Stephens & S. J. Cooke, 2008. Fish response to modified flow regimes in regulated rivers: research methods, effects and opportunities. River Research and Applications 24: 197–217.CrossRefGoogle Scholar
  29. Mulholland, P. J., J. D. Newbold, J. W. Elwood & J. R. Webster, 1985. Phosphorus spiralling in a woodland stream: seasonal variations. Ecology 66: 1012–1023.CrossRefGoogle Scholar
  30. Mulholland, P. J., J. L. Tank, D. M. Sanzone, W. M. Wollheim, B. J. Peterson, J. R. Webster & J. L. Meyer, 2000. Nitrogen cycling in a forest stream determined by a 15N tracer addition. Ecological Monographs 70: 471–493.Google Scholar
  31. Mulholland, P. J., S. A. Thomas, H. M. Valett, J. R. Webster & J. Beaulieu, 2006. Effects of light on nitrate uptake in small forested streams: diurnal and day-to-day variations. Journal of the North American Benthological Society 25: 583–595.CrossRefGoogle Scholar
  32. Newbold, J. D., J. W. Elwood, R. V. O’Neil & W. Van Winkle, 1981. Measuring nutrient spiraling in streams. Canadian Journal of Fisheries and Aquatic Sciences 38: 860–863.CrossRefGoogle Scholar
  33. Peterson, B. J., W. Wolheim, P. J. Mulholland, J. R. Webster, J. L. Meyer, J. L. Tank, N. B. Grimm, E. Martí, W. B. Bowden, H. M. Vallet, A. E. Hershey, W. B. McDowell, W. K. Dodds, S. K. Hamilton, S. V. Gregory & D. J. D’Angelo, 2001. Control of nitrogen export from watersheds by headwater streams. Science 292: 86–90.PubMedCrossRefGoogle Scholar
  34. Petts, G. E., 1984. Impounded Rivers—Perspectives for Ecological Management. Wiley, Chichester.Google Scholar
  35. Powers, S. M., E. H. Stanley & N. R. Lottig, 2009. Quantifying phosphorus uptake using pulse and steady-state approaches in streams. Limnology and Oceanography Methods 7: 498–508.CrossRefGoogle Scholar
  36. Roberts, B. J., P. J. Mulholland & A. N. Houser, 2007. Effects of upland disturbance and instream restoration on hydrodynamics and ammonium uptake in headwater streams. Journal of the North American Benthological Society 26: 38–53.CrossRefGoogle Scholar
  37. Runkel, R. L., 1998. One-dimensional Transport with Inflow and Storage (OTIS): A Solute Transport Model for Streams and Rivers. U.S. Geological Survey Water-Resources Investigation Report 98-4018, Denver, CO.Google Scholar
  38. Sabater, F., A. Buturini, E. Martí, I. Muñoz, A. Romaní, J. Wray & S. Sabater, 2000. Effects of riparian vegetation removal on nutrient retention in a Mediterranean stream. Journal of the North American Benthological Society 19: 609–620.CrossRefGoogle Scholar
  39. Sartory, D. P. & J. E. Grobbelaar, 1984. Extraction of chlorophyll a from freshwater phytoplankton for spectrophotometric analysis. Hydrobiologia 114: 177–187.CrossRefGoogle Scholar
  40. Steinman, A. D. & H. L. Boston, 1993. The ecological role of aquatic bryophytes in a woodland stream. Journal of the North American Benthological Society 12: 17–26.CrossRefGoogle Scholar
  41. Stream Solute Workshop, 1990. Concepts and methods for assessing solute dynamics in stream ecosystems. Journal of the North American Benthological Society 9: 95–119.CrossRefGoogle Scholar
  42. Sweeney, B. W., T. L. Bott, J. K. Jackson, L. A. Kaplan, J. D. Newbold, L. J. Standley, W. C. Hession & R. J. Horwitz, 2004. Riparian deforestation, stream narrowing, and loss of ecosystem services. Proceedings of the National Academy of Sciences 101: 14132–14137.CrossRefGoogle Scholar
  43. Triska, F. J., A. P. Jackman, J. H. Duff & R. J. Avanzino, 1994. Ammonium sorption to channel and riparian sediments—a transient storage pool for dissolved inorganic nitrogen. Biogeochemistry 26: 67–83.CrossRefGoogle Scholar
  44. Uehlinger, U., 2000. Resistance and resilience of ecosystem metabolism in a flood-prone river system. Freshwater Biology 45: 319–332.CrossRefGoogle Scholar
  45. Valett, H. M., J. A. Morice, C. N. Dahm & M. E. Campana, 1996. Parent lithology, surface–groundwater exchange, and nitrate retention in headwater streams. Limnology and Oceanography 41: 333–345.CrossRefGoogle Scholar
  46. von Schiller, D., E. Martí, J. L. Riera, M. Ribot, J. C. Marks & F. Sabater, 2008. Influence of land use on stream ecosystem function in a Mediterranean catchment. Freshwater Biology 53: 2600–2612.CrossRefGoogle Scholar
  47. Ward, J. V. & J. A. Stanford (eds), 1979. The Ecology of Regulated Streams. Plenum Press, New York.Google Scholar
  48. Ward, J. V., K. Tockner & F. Schiemer, 1999. Biodiversity of floodplain river ecosystems: ecotones and connectivity. Regulated Rivers: Research and Management 15: 125–139.Google Scholar
  49. Webster, J. R. & M. H. Valett, 2006. Solute dynamics. In Hauer, F. R. & G. A. Lamberti (eds), Methods in Stream Ecology. Academic, San Diego.Google Scholar
  50. Webster, J. R., P. J. Mulholland, J. L. Tank, H. M. Valett, W. K. Dodds, B. J. Peterson, W. B. Bowden, C. N. Dahm, S. Findlay, S. V. Gregory, N. B. Grimm, S. K. Hamilton, S. L. Johnson, E. Martí, W. H. McDowell, J. L. Meyer, D. D. Morrall, S. A. Thomas & W. M. Wollheim, 2003. Factors affecting ammonium uptake in streams—an interbiome perspective. Freshwater Biology 48: 1329–1352.CrossRefGoogle Scholar
  51. Wilcock, R. J., M. R. Scarsbrook, K. J. Costley & J. W. Nagels, 2002. Controlled release experiments to determine the effects of shade and plants on nutrient retention in a lowland stream. Hydrobiologia 485: 153–169.CrossRefGoogle Scholar
  52. Wood, P. J. & P. D. Armitage, 1997. Biological effects of fine sediment in the lotic environment. Environmental Management 21: 203–217.PubMedCrossRefGoogle Scholar
  53. Zarnetske, J. P., M. N. Gooseff, T. R. Brosten, J. H. Bradford, J. P. McNamara & W. B. Bowden, 2007. Transient storage as a function of geomorphology, discharge, and permafrost active layer conditions in Arctic tundra streams. Water Resources Research, 43. doi:10.1029/2005WR004816.

Copyright information

© Springer Science+Business Media Dordrecht 2012

Authors and Affiliations

  • Oihana Izagirre
    • 1
  • Alba Argerich
    • 2
  • Eugènia Martí
    • 3
  • Arturo Elosegi
    • 1
  1. 1.Department of Plant Biology and EcologyFaculty of Science and Technology, the University of the Basque CountryBilbaoSpain
  2. 2.Department of Forest Ecosystems and SocietyOregon State UniversityCorvallisUSA
  3. 3.Biogeodynamics & Biodiversity GroupCentre d’Estudis Avançats de Blanes (CEAB-CSIC)BlanesSpain

Personalised recommendations