Skip to main content
Log in

Increasing synchrony of high temperature and low flow in western North American streams: double trouble for coldwater biota?

  • FORM AND FUNCTION
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Flow and temperature are strongly linked environmental factors driving ecosystem processes in streams. Stream temperature maxima (T max_w) and stream flow minima (Q min) can create periods of stress for aquatic organisms. In mountainous areas, such as western North America, recent shifts toward an earlier spring peak flow and decreases in low flow during summer/fall have been reported. We hypothesized that an earlier peak flow could be shifting the timing of low flow and leading to a decrease in the interval between T max_w and Q min. We also examined if years with extreme low Q min were associated with years of extreme high T max_w. We tested these hypotheses using long-term data from 22 minimally human-influenced streams for the period 1950–2010. We found trends toward a shorter time lag between T max_w and Q min over time and a strong negative association between their magnitudes. Our findings show that aquatic biota may be increasingly experiencing narrower time windows to recover or adapt between these extreme events of low flow and high temperature. This study highlights the importance of evaluating multiple environmental drivers to better gage the effects of the recent climate variability in freshwaters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Arismendi, I., S. Johnson, J. Dunham, R. Haggerty & D. Hockman-Wert, 2012. The paradox of cooling streams in a warming world: regional climate trends do not parallel variable local trends in stream temperature in the Pacific continental United States. Geophysical Research Letters 39: L10401.

    Article  Google Scholar 

  • Barnett, T. P., D. W. Pierce, H. G. Hidalgo, C. Bonfils, B. D. Santer, T. Das, G. Bala, A. W. Wood, T. Nozawa, A. A. Mirin, D. R. Cayan & M. D. Dettinger, 2008. Human-induced changes in the hydrology of the Western United States. Science 319: 1080–1083.

    Article  PubMed  CAS  Google Scholar 

  • Benda, L., N. L. Poff, D. Miller, T. Dunne, G. Reeves, G. Pess & M. Pollock, 2004. The network dynamics hypothesis: how channel networks structure riverine habitats. Bioscience 54(5): 413–427.

    Article  Google Scholar 

  • Burton, T. M. & G. E. Likens, 1973. The effect of strip-cutting on stream temperatures in the Hubbard Brook Experimental Forest, New Hampshire. BioScience 23(7): 433–435.

    Article  Google Scholar 

  • Caissie, D., 2006. The thermal regime of rivers: a review. Freshwater Biology 51(8): 1389–1406.

    Article  Google Scholar 

  • Clews, E., I. Durance, I. P. Vaughan & S. J. Ormerod, 2010. Juvenile salmonid populations in a temperate river system track synoptic trends in climate. Global Change Biology 16: 3271–3283.

    Article  Google Scholar 

  • Coulibaly, P. & D. H. Burn, 2005. Spatial and temporal variability of Canadian seasonal streamflows. Journal of Climate 18: 1991–2010.

    Article  Google Scholar 

  • Ebersole, J. L., W. J. Liss & C. A. Frissell, 2003. Thermal heterogeneity, stream channel morphology and salmonid abundance in northeast Oregon streams. Canadian Journal of Fisheries and Aquatic Sciences 60: 1266–1280.

    Article  Google Scholar 

  • Falcone, J. A., D. M. Carlisle, D. M. Wolock & M. R. Meador, 2010. GAGES: a stream gage database for evaluating natural and altered flow conditions in the conterminous United States. Ecology 91: 621.

    Article  Google Scholar 

  • Fry, F. E. J., 1947. Effects of the environment on animal activity. University of Toronto Studies, Biological Series 55. Publication of the Ontario Fisheries Research Laboratory 68: 1–62.

  • Hakala, J. P. & K. J. Hartman, 2004. Drought effect on stream morphology and brook trout (Salvelinus fontinalis) populations in forested headwater streams. Hydrobiologia 515: 203–213.

    Article  Google Scholar 

  • Harvey, B. C., R. J. Nakamoto & J. L. White, 2006. Reduced streamflow lowers dry-season growth of rainbow trout in a small stream. Transactions of the American Fisheries Society 135: 998–1005.

    Article  Google Scholar 

  • Johnson, S. L., 2004. Factors influencing stream temperatures in small streams: substrate effects and a shading experiment. Canadian Journal of Fisheries and Aquatic Sciences 61: 913–923.

    Article  Google Scholar 

  • Johnson, S. L. & J. A. Jones, 2000. Stream temperature response to forest harvest and debris flows in western Cascades, Oregon. Canadian Journal of Fisheries and Aquatic Sciences 57(supplement 2): 30–39.

    Article  Google Scholar 

  • Kundzewicz, Z. W., & A. Robson (eds), 2000. Detecting trend and other changes in hydrological data. World climate programme data and monitoring. United Nations Educational World Meteorological Scientific and Cultural Organization. WCDMP-45. Geneva, Italy.

  • Leppi, J. C., T. H. DeLuca, S. W. Harrar & S. W. Running, 2011. Impacts of climate change on August stream discharge in the Central-Rocky Mountains. Climatic Change. doi:10.1007/s10584-011-0235-1.

    Google Scholar 

  • Lins, H. F. & J. R. Slack, 1999. Streamflow trends in the United States. Geophysical Research Letters 26(2): 227–230.

    Article  Google Scholar 

  • Luce, C. H. & Z. A. Holden, 2009. Declining annual streamflow distributions in the Pacific Northwest United States, 1948–2006. Geophysical Research Letters 36: L16401.

    Article  Google Scholar 

  • Lytle, D. A. & N. L. Poff, 2004. Adaptation to natural flow regimes. Trends in Ecology and Evolution 19: 94–100.

    Article  PubMed  Google Scholar 

  • Magnuson, J. J., L. B. Crowder & P. A. Medvick, 1979. Temperature as an ecological resource. American Zoologist 19: 331–343.

    Google Scholar 

  • Mantua, N., I. Tohver & A. Hamlet, 2010. Climate change impacts on streamflow extremes and summertime stream temperature and their possible consequences for freshwater salmon habitat in Washington State. Climatic Change 102: 187–223.

    Article  Google Scholar 

  • Matthews, W. J. & E. Marsh-Matthews, 2003. Effects of drought on fish across axes of space, time, and ecological complexity. Freshwater Biology 48: 1232–1253.

    Article  Google Scholar 

  • Maurer, E. P., A. W. Wood, J. C. Adam, D. P. Lettenmaier & B. Nijssen, 2002. A long-term hydrologically-based data set of land surface fluxes and states for the conterminous United States. Journal of Climate 15: 3237–3251.

    Article  Google Scholar 

  • May, C. L. & D. C. Lee, 2004. The relationships among inchannel sediment storage, pool depth, and summer survival of juvenile salmonids in Oregon Coast Range streams. North American Journal of Fisheries Management 24: 761–774.

    Article  Google Scholar 

  • McCullough, D. A., J. M. Bartholow, H. I. Jager, R. L. Beschta, E. F. Cheslak, M. L. Deas, J. L. Ebersole, J. S. Foott, S. L. Johnson, K. R. Marine, M. G. Mesa, J. H. Petersen, Y. Souchon, K. F. Tiffan & W. A. Wurtsbaugh, 2009. Research in thermal biology: burning questions for coldwater stream fishes. Reviews in Fisheries Science 17(1): 90–115.

    Article  Google Scholar 

  • Mohseni, O., H. G. Stefan & T. R. Erickson, 1998. A nonlinear regression model for weekly stream temperatures. Water Resources Research 34(10): 2685–2692.

    Article  Google Scholar 

  • Montgomery, D. R., 1999. Process domains and the river continuum. Journal of the American Water Resources Association 35: 397–410.

    Article  Google Scholar 

  • Mote, P. W., A. F. Hamlet, M. Clark & D. P. Lettenmaier, 2005. Declining mountain snowpack in western North America. Bulletin of the American Meteorological Society 86: 39–49.

    Article  Google Scholar 

  • Nolin, A. W. & C. Daly, 2006. Mapping “at risk” snow in the Pacific Northwest. Journal of Hydrometeorology 7: 1164–1171.

    Article  Google Scholar 

  • Noormets, A., (ed.) 2009. Phenology of ecosystem processes applications in global change research. Springer, New York. doi:10.1007/978-1-4419-0026-5.

  • Poff, N. L. & J. V. Ward, 1989. Implications of streamflow variability and predictability for lotic community structure: a regional analysis of streamflow patterns. Canadian Journal of Fisheries and Aquatic Sciences 46: 1805–1818.

    Article  Google Scholar 

  • Poole, G. C. & C. H. Berman, 2001. An ecological perspective on in-stream temperature: natural heat dynamics and mechanisms of human-caused thermal degradation. Environmental Management 27(6): 787–802.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan, B. & U. Lall, 1998. Interannual variability in western US precipitation. Journal of Hydrology 210: 51–67.

    Article  Google Scholar 

  • Regonda, S. K., B. Rajagopalan, M. Clark & J. Pitlick, 2005. Seasonal cycle shifts in hydroclimatology over the Western United States. Journal of Climate 18: 372–384.

    Article  Google Scholar 

  • Shelford, V. E., 1931. Some concepts of bioecology. Ecology 123: 455–467.

    Article  Google Scholar 

  • Smakhtin, V. U., 2001. Low flow hydrology: a review. Journal of Hydrology 240: 147–186.

    Article  Google Scholar 

  • Steinmetz, J., S. L. Kohler & D. A. Soluk, 2003. Birds are overlooked top predators in aquatic food webs. Ecology 84: 1324–1328.

    Article  Google Scholar 

  • Svensson, C., W. Z. Kundzewicz & T. Maurer, 2005. Trend detection in river flow series: 2. Flood and low-flow index series. Hydrological Sciences Journal 50(5): 811–824.

    Article  Google Scholar 

  • van Vliet, M. T. H., F. Ludwig, J. J. G. Zwolsman, G. P. Weedon & P. Kabat, 2011. Global river temperatures and sensitivity to atmospheric warming and changes in river flow. Water Resources Research 47: W02544.

    Google Scholar 

  • Vannote, R. L. & B. W. Sweeney, 1980. Geographic analysis of thermal equiliberia – a conceptual–model for evaluating the effects of natural and modified thermal regimes on aquatic insect communities. American Naturalist 115: 667–695.

    Article  Google Scholar 

  • Wahl, K. L. & T. L. Wahl, 1995. Determining the flow of Comal Springs at New Braunfels, Texas, Texas Water ‘95, American Society of Civil Engineers, 16–17 August, 1995, San Antonio, Texas: 77–86.

  • Webb, B. W., D. M. Hannah, R. D. Moore, L. E. Brown & F. Nobilis, 2008. Recent advances in stream and river temperature research. Hydrological Processes 22: 902–918.

    Article  Google Scholar 

Download references

Acknowledgments

Brooke Penaluna, Tim D. Mayer, two anonymous referees, and the associated editor provided comments on the manuscript. Financial support was provided by US Geological Survey, the US Forest Service Pacific Northwest Research Station and Oregon State University. Use of firm or trade names is for reader information only and does not imply endorsement of any product or service by the U.S. Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Arismendi.

Additional information

Guest editors: A. Elosegi, M. Mutz & H. Piégay / Form and function: channel form, hydraulic integrity, and river ecosystem functioning

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 9795 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arismendi, I., Safeeq, M., Johnson, S.L. et al. Increasing synchrony of high temperature and low flow in western North American streams: double trouble for coldwater biota?. Hydrobiologia 712, 61–70 (2013). https://doi.org/10.1007/s10750-012-1327-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1327-2

Keywords

Navigation