Skip to main content
Log in

Microhabitat variability of macrobenthic organisms within tidal creek systems

  • Primary research paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Tidal creeks are transitional habitats between fresh and salt water with large spatial heterogeneity. As a result there are most likely various microhabitats at different spatial scales. This study attempted to determine at what scales the macrobenthic communities in tidal creeks differ. Samples were collected in headwater, intertidally dominated areas and downstream, subtidally dominated areas of tidal creek habitats at three exposure levels. Samples were analyzed to determine distributions of dominant higher taxa of annelids, crustaceans, and mollusks with particular interest to two dominant species: the oligochaete Monopylephorus rubroniveus (Levinsen) and the polychaete Streblospio benedicti (Webster). Finally, family diversity, evenness, and community composition were examined. While M. rubroniveus was primarily found in intertidal exposures in the headwaters, S. benedicti was found throughout all of the creek lengths and exposure levels. Communities in the marsh appeared to be similar throughout the length of the creek. Communities in the intertidal and subtidal exposure levels differed between the headwaters and downstream areas and between each other in the headwaters. PERMANOVA found communities to differ among all exposure levels and orders. Thus, it is important to take into account both longitudinal position and microhabitat when sampling these communities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Anderson, M. J., R. N. Gorley & K. R. Clarke, 2008. PERMANOVA+ for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth, UK.

    Google Scholar 

  • Beck, M. W., K. L. Heck Jr., K. W. Able, D. L. Childers, D. B. Eggleston, B. M. Gillanders, B. Halpern, C. G. Hays, K. Hoshino, T. J. Minello, R. J. Orth, P. F. Sheridan & M. P. Weinstein, 2001. The identification, conservation, and management of estuarine and marine nurseries for fish and invertebrates. BioScience 51: 633–641.

    Article  Google Scholar 

  • Bilkovic, D. M., M. Roggero, C. H. Hershner & K. H. Havens, 2006. Influence of land use on macrobenthic communities in nearshore estuarine habitats. Estuaries and Coasts 29: 1185–1195.

    Google Scholar 

  • Clark, K. R. & R. N. Gorley, 2006. PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth.

    Google Scholar 

  • Cushing, C. E., C. D. McIntire, K. W. Cummins, G. W. Minshall, R. C. Petersen, J. R. Sedell & R. L. Vannote, 1983. Relationships among chemical, physical, and biological indices along river continua based on multivariate analyses. Arch Hydrobiology 98: 317–326.

    CAS  Google Scholar 

  • Dauvin, J. C., 2007. Paradox of estuarine quality: benthic indicators and indices, consensus or debate for the future. Marine Ecology Progress Series 28: 62–64.

    Google Scholar 

  • Day, J. W. Jr., A. Westphal, R. Pratt, E. Hyfield, J. Rybczyk, G. P. Kemp, J. N. Day & B. Marx, 2006. Effects of long-term municipal effluent discharge on the nutrient dynamics, productivity, and benthic community structure of a tidal freshwater forested wetland of Louisiana. Ecological Engineering 27: 242–257.

    Article  Google Scholar 

  • Diaz, R. J. & R. Rosenberg, 1995. Marine benthic hypoxia: a review of its ecological effects and the behavioural responses of benthic macrofauna. Oceanography and Marine Biology Annual Review 33: 245–303.

    Google Scholar 

  • DiDonato, G. T., J. R. Stewart, D. M. Sanger, B. J. Robinson, B. C. Thompson, F. Holland & R. F. Van Dolan, 2009. Effects of changing land use on the microbial water quality of tidal creeks. Marine Pollution Bulletin 58: 97–106.

    Article  PubMed  CAS  Google Scholar 

  • Elliott, M. & V. Quintino, 2007. The Estuarine Quality ParadoxB, environmental homeostasis and the difficulty of detecting anthropogenic stress in naturally stressed areas. Marine Pollution Bulletin 54: 640–645.

    Article  PubMed  CAS  Google Scholar 

  • Frissell, C. A., W. J. Liss, C. E. Warren & M. D. Hurley, 1986. A hierarchical framework for stream habitat classification: viewing streams in a watershed context. Environmental Management 10: 199–214.

    Article  Google Scholar 

  • Gillett, D. J., A. F. Holland & D. M. Sanger, 2005. Secondary production of a dominant oligochaete (Monopylephorus rubroniveus) in the tidal creeks of South Carolina and its relation to ecosystem characteristics. Limnology and Oceanography 50: 566–577.

    Article  Google Scholar 

  • Gimenez, L., A. I. Borthagaray, M. Rodriquez, A. Brazeiro & C. Dimitriadis, 2005. Scale-dependent patterns of macrofaunal distribution in soft-sediment intertidal habitats along a large-scale estuarine gradient. Helgoland Marine Research 59: 224–236.

    Article  Google Scholar 

  • Grassle, J. F. & J. P. Grassle, 1974. Opportunistic life histories and genetic systems in marine benthic polychaetes. Journal of Marine Research 32: 253–284.

    Google Scholar 

  • Holland, A. F., D. M. Sanger, C. P. Gawle, S. B. Lerberg, M. S. Santiago, G. H. M. Riekerk, L. E. Zimmerman & G. I. Scott, 2004. Linkages between tidal creek ecosystems and the landscape and demographic attributes of their watersheds. Journal of Experimental Marine Biology and Ecology 298: 151–178.

    Article  Google Scholar 

  • Kanaya, G. & E. Kikuchi, 2008. Spatial changes in a macrozoobenthic community along environmental gradients in a shallow brackish lagoon facing Sendai Bay, Japan. Estuarine, Coastal and Shelf Science 78: 674–684.

    Article  Google Scholar 

  • Kneib, R. T., 1984. Patterns of invertebrate distribution and abundance in the intertidal salt marsh: causes and questions. Estuaries 7: 392–412.

    Article  Google Scholar 

  • Kneib, R. T., 1997. The role of tidal marshes in the ecology of estuarine nekton. Oceanographic Marine Biology Annual Review 35: 163–220.

    Google Scholar 

  • Lauringson, V., J. Kotta, P. Kersen, U. Leisk, H. Orav-Kotta & I. Kotta, 2012. Use case of biomass-based benthic invertebrate index for brackish waters in connection to climate and eutrophication. Ecological Indicators 12: 123–132.

    Article  CAS  Google Scholar 

  • Lerberg, S. B., A. F. Holland & D. M. Sanger, 2000. Responses of tidal creek macrobenthic communities to the effects of watershed development. Estuaries 23: 838–853.

    Article  CAS  Google Scholar 

  • Mallin, M. A., J. M. Burkholder, L. B. Cahoon & M. H. Posey, 2000. North and South Carolina coasts. Marine Pollution Bulletin 41: 56–75.

    Article  CAS  Google Scholar 

  • Montagna, P. A., 2003. Effect of freshwater inflow on macrobenthos productivity in minor bay and river-dominated estuaries—FY03. Final Report to Texas Water Development Board, Contract No. 2003-483-471, University of Texas Marine Science Institute Technical Report Number TR/03-03: 56.

  • McArdle, B. H. & M. J. Anderson, 2001. Fitting multivariate models to community data: a comment on distance-based redundancy analysis. Ecology 82: 290–297.

    Article  Google Scholar 

  • McCann, L. D. & L. Levin, 1989. Oligocheete influence on settlement, growth and reproduction in a surface-deposit feeding polychaete. Journal of Experimental Marine Biology and Ecology 131: 233–253.

    Article  Google Scholar 

  • Neto, J. M., M. R. Flindt, J. C. Marques & M. A. Pardal, 2008. Modelling nutrient mass balance in a temperate macro-tidal estuary: implications to management. Estuarine, Coastal, and Shelf Science 76: 175–185.

    Article  Google Scholar 

  • Nichols, F. H., 1985. Abundance fluctuations among benthic invertebrates in two Pacific estuaries. Estuaries 8: 136–144.

    Article  Google Scholar 

  • Patricio, J., H. Adao, J. M. Neto, A. S. Alves, W. Traunspurger & J. C. Marques, 2012. Do nematode and macrofauna assemblages provide similar ecological assessment information? Ecological Indicators 14: 124–137.

    Article  Google Scholar 

  • Pfannkuche, O., 1979. Abundance and life cycle of littoral marine and brackish water Tubificidae and Naididae (oligochaeta). In Naylor, E. & R. G. Hartnoll (eds), Cyclic Phenomena in Marine Plants and Animals. Pergamon Press, Oxford, England: 103–111.

    Google Scholar 

  • Plumb, R. H. Jr., 1981. Procedures for handling and chemical analysis of sediment and water samples. Technical Report EPA/CE-81-1. Prepared for the U.S. Environment Protection Agency/Corps of Engineers Technical Committee on Criteria for Dredged and Filled Material. Published by Environmental Laboratory, U.S. Army Waterways Experiment Station, Vicksburg, MS.

  • Rader, D. N., 1984. Salt-marsh benthic invertebrates: small-scale patterns of distribution and abundances. Estuaries 7: 413–420.

    Article  Google Scholar 

  • Sanger, D., A. Blair, G. DiDonato, T. Washburn, S. Jones, R. Chapman, D. Bergquist, G. Riekerk, E. Wirth, J. Stewart, D. White, L. Vandiver, S. White & D. Whitall, 2008. Support for integrated ecosystem assessments of NOAA’s National Estuarine Research Reserves Systems (NERRS), Volume I: the impacts of coastal development on the ecology and human well-being of tidal creek ecosystems of the U. S. Southeast. NOAA Technical Memorandum NOS NCCOS, 82, 76 pp. Charleston, SC.

  • Seys, J., M. Vinex & P. Meine, 1999. Spatial distribution of oligochaetes (Clitellata) in the tidal freshwater and brackish parts of the Schelde estuary (Belgium). Hydrobiologia 406: 119–132.

    Article  Google Scholar 

  • Shenker, J. M. & J. M. Dean, 1979. The utilization of an intertidal salt marsh creek by larval and juvenile fishes: abundance, diversity and temporal variation. Estuaries 2: 154–163.

    Article  Google Scholar 

  • Snelgrove, P. V. R. & C. A. Butman, 1994. Animal sediment relationships revisited: cause versus effect. Oceanography and Marine Biology 32: 111–117.

    Google Scholar 

  • Strahler, A. N., 1957. Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union 38: 913–920.

    Article  Google Scholar 

  • Teixeira, H., F. Salas, J. M. Neto, J. Patricio, R. Pinto, H. Verissimo, J. A. Garcia-Charton, C. Marcos, A. Perez-Ruzafa & J. C. Marques, 2008. Ecological indices tracking distinct impacts along disturbance-recovery gradients in a temperate NE Atlantic Estuary—guidance on reference values. Estuarine, Coastal, and Shelf Science 30: 130–140.

    Article  Google Scholar 

  • Washburn, T. & D. Sanger, 2011. Land use effects on macrobenthic communities in southeastern United States tidal creeks. Environmental Monitoring and Assessment 180: 177–188.

    Article  PubMed  Google Scholar 

  • Weinstein, J. E. & D. M. Sanger, 2003. Comparative tolerance of two estuarine annelids to fluoranthene under normoxic and moderately hypoxic conditions. Marine Environmental Research 56: 637–648.

    Article  PubMed  CAS  Google Scholar 

  • Werme, C., 1981. Resource partitioning in a salt marsh fish community. Ph.D. Dissertation, Boston University, Boston, MA.

  • Wilson, H. W., 1991. Competition and predation in marine soft-sediment communities. Annual Review of Ecology and Systematics 21: 221–241.

    Article  Google Scholar 

  • Ysebaert, T., L. De Neve & P. Meire, 2000. The subtidal macrobenthos in the mesohaline part of the Schelde Estuary (Belgium): influenced by man? Journal of the Marine Biological Association of the UK 30: 587–597.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Ecological Research, Assessment and Prediction group (ERAP) at Hollings Marine Laboratory. Support was also provided by the Grice Marine Biological Laboratory at the College of Charleston, and this is contribution number 393. I would like to thank my thesis committee (Drs. Marie DeLorenzo, Jeff Hyland and Guy DiDonato). Valuable input was also provided by several anonymous reviewers. This work was funded in part by the NOAA Oceans and Human Health Initiative and S.C. Sea Grant Consortium through a grant from NOAA Hollings Marine Laboratory. The National Ocean Service (NOS) does not approve, recommend, or endorse any proprietary product or material mentioned in this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Travis Washburn.

Additional information

Handling editor: Pierluigi Viaroli

Rights and permissions

Reprints and permissions

About this article

Cite this article

Washburn, T., Sanger, D.M. Microhabitat variability of macrobenthic organisms within tidal creek systems. Hydrobiologia 702, 15–25 (2013). https://doi.org/10.1007/s10750-012-1297-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1297-4

Keywords

Navigation