Aller, R. C., 1994. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology 114: 331–345.
Article
CAS
Google Scholar
Aller, R. C. & J. Y. Yingst, 1978. Biogeochemistry of tube-dwellings: a study of the sedentary polychaete Amphitrite ornata. Journal of Marine Research 36: 201–254.
CAS
Google Scholar
Balcom, P. H., W. F. Fitzgerald, G. M. Vandal, C. H. Lamborg, K. R. Rolfhus, C. S. Langer & C. R. Hammerschmidt, 2004. Mercury sources and cycling in the Connecticut River and Long Island Sound. Marine Chemistry 90: 53–74.
Article
CAS
Google Scholar
Balcom, P. H., C. R. Hammerschmidt, W. F. Fitzgerald, C. H. Lamborg & J. S. O’Connor, 2008. Seasonal distributions and cycling of mercury and methylmercury in the waters of New York/New Jersey Harbor Estuary. Marine Chemistry 109: 1–17.
Article
CAS
Google Scholar
Battin, T. J., 1997. Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biofilms. Science of the Total Environment 198: 51–60.
Article
CAS
Google Scholar
Benoit, J. M., C. C. Gilmour, R. P. Mason & A. Heyes, 1999. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology 33: 951–957.
Article
CAS
Google Scholar
Benoit, J. M., D. H. Shull, R. M. Harvey & S. A. Beal, 2009. Effect of bioirrigation on sediment–water exchange of methylmercury in Boston Harbor, Massachusetts. Environmental Science & Technology 43: 3669–3674.
Article
CAS
Google Scholar
Berner, R. A. & J. T. Westrich, 1985. Bioturbation and the early diagenesis of carbon and sulfur. American Journal of Science 285: 193–206.
Article
CAS
Google Scholar
Bloom, N. S., J. A. Colman & L. Barber, 1997. Artifact formation of methylmercury during aqueous distillation and alternative techniques for the extraction of methyl mercury from environmental samples. Fresenius Journal of Analytical Chemistry 358: 371–377.
Article
CAS
Google Scholar
Brohon, B., C. Delolme & R. Gourdon, 2001. Complementarity of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality. Soil Biology and Biochemistry 33: 883–891.
Article
CAS
Google Scholar
Compeau, G. C. & R. Bartha, 1985. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology 50: 498–502.
PubMed
CAS
Google Scholar
Drott, A., L. Lambertsson, E. Björn & U. Skyllberg, 2008. Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments? Environmental Science & Technology 42: 153–158.
Article
CAS
Google Scholar
Findlay, R. H., M. B. Trexler, J. B. Guckert & D. C. White, 1990. Laboratory study of disturbance in marine sediments: response of a microbial community. Marine Ecology Progress Series 62: 121–133.
Article
Google Scholar
Fleming, E. J., E. E. Mack, P. G. Green & D. C. Nelson, 2006. Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology 72: 457–464.
PubMed
Article
CAS
Google Scholar
Fontvieille, D., A. Outaguerouine & D. R. Thevenot, 1992. Fluoresceine diacetate hydrolysis as a measure of microbial activity in aquatic systems. Application to activated sludge. Environmental Technology 13: 531–540.
Article
CAS
Google Scholar
Gerino, M., 1990. The effects of bioturbation on particle redistribution in Mediterranean coastal sediment – preliminary results. Hydrobiologia 207: 251–258.
Article
Google Scholar
Gilbert, F., P. Bonin & G. Stora, 1995. Effect of bioturbation on denitrification in a marine sediment from the West Mediterranean littoral. Hydrobiologia 304: 49–58.
Article
CAS
Google Scholar
Gilbert, F., G. Stora & P. Bonin, 1998. Influence of bioturbation on denitrification activity in Mediterranean coastal sediments: an in situ experimental approach. Marine Ecology Progress Series 163: 99–107.
Article
CAS
Google Scholar
Gill, G. A. & W. F. Fitzgerald, 1985. Mercury sampling of open ocean waters at the picomolar level. Deep Sea Research 32: 287–297.
Article
CAS
Google Scholar
Gilmour, C. C. & G. S. Riedel, 1995. Measurement of Hg methylation in sediments using high specific-activity 203Hg and ambient incubation. Water, Air, & Soil Pollution 80: 747–756.
Article
CAS
Google Scholar
Gilmour, C. C., E. A. Henry & R. Mitchell, 1992. Sulfate stimulation of mercury methylation in freshwater sediments. Environmental Science & Technology 26: 2281–2287.
Article
CAS
Google Scholar
Goldhaber, M. B., R. C. Aller, J. K. Cochran, J. K. Rosenfeld, C. S. Martens & R. A. Berner, 1977. Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: report of the FOAM group. American Journal of Science 277: 193–237.
Article
CAS
Google Scholar
Hammerschmidt, C. R. & W. F. Fitzgerald, 2004. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental Science & Technology 38: 1487–1495.
Article
CAS
Google Scholar
Hammerschmidt, C. R. & W. F. Fitzgerald, 2006. Methylmercury cycling in sediment on the continental shelf of southern New England. Geochimica et Cosmochimica Acta 70: 918–930.
Article
CAS
Google Scholar
Hammerschmidt, C. R. & W. F. Fitzgerald, 2008. Sediment–water exchange of methylmercury estimated with shipboard benthic flux chambers in New York/New Jersey Harbor. Marine Chemistry 109: 86–97.
Article
CAS
Google Scholar
Hammerschmidt, C. R., W. F. Fitzgerald, C. H. Lamborg, P. H. Balcom & P. T. Visscher, 2004. Biogeochemistry of methylmercury in sediments of Long Island Sound. Marine Chemistry 90: 31–52.
Article
CAS
Google Scholar
Hansen, K., G. M. King & E. Kristensen, 1996. Impact of the soft-shelled clam Mya arenaria on sulfate reduction in an intertidal sediment. Aquatic Microbial Ecology 10: 181–194.
Article
Google Scholar
Hedin, L. O., 1990. Factors controlling sediment community respiration in woodland stream ecosystems. Oikos 57: 94–105.
Article
Google Scholar
Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimation organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.
Article
Google Scholar
Heyes, A., R. P. Mason, E.-H. Kim & E. Sunderland, 2006. Mercury methylation in estuaries: insights from using measuring rates using stable mercury isotopes. Marine Chemistry 102: 134–147.
Article
CAS
Google Scholar
Hines, M. E. & G. E. Jones, 1985. Microbial biogeochemistry and bioturbation in the sediments of Great Bay, New Hampshire. Estuarine, Coastal and Shelf Science 20: 729–742.
Article
CAS
Google Scholar
Hintelmann, H. & R. D. Evans, 1997. Application of stable isotopes in environmental tracer studies – measurement of monomethylmercury (CH3Hg+) by isotope dilution ICP-MS and detection of species transformation. Fresenius Journal of Analytical Chemistry 358: 378–385.
Article
CAS
Google Scholar
Hintelmann, H., K. Keppel-Jones & R. D. Evans, 2000. Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environmental Toxicology & Chemistry 19: 2204–2211.
Article
CAS
Google Scholar
Holdren, G. C. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intact lake sediment cores. Environmental Science & Technology 14: 79–87.
Article
Google Scholar
Hollweg, T. A., C. C. Gilmour & R. P. Mason, 2009. Methylmercury production in sediments of Chesapeake Bay and the mid-Atlantic continental margin. Marine Chemistry 114: 86–101.
Article
CAS
Google Scholar
Kerin, E. J., C. C. Gilmour, E. Roden, M. T. Suzuki, J. D. Coates & R. P. Mason, 2006. Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology 72: 7919–7921.
PubMed
Article
CAS
Google Scholar
Krantzberg, G., 1985. The influence of bioturbation on physical, chemical and biological parameters in aquatic environments: a review. Environmental Pollution 39: 99–122.
CAS
Google Scholar
Kristensen, E., 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1–24.
Article
CAS
Google Scholar
Kristensen, E. & K. Hansen, 1999. Transport of carbon dioxide and ammonium in bioturbated (Nereis diversicolor) coastal, marine sediments. Biogeochemistry 45: 147–168.
Google Scholar
Langer, C. S., W. F. Fitzgerald, P. T. Visscher & G. M. Vandal, 2001. Biogeochemical cycling of methylmercury at Barn Island Salt Marsh, Stonington, CT, USA. Wetlands Ecology and Management 9: 267–295.
Article
Google Scholar
Marvin-Dipasquale, M. C., J. L. Agee, C. McGowan, R. S. Oremland, M. Thomas, D. Krabbenhoft & C. C. Gilmour, 2000. Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environmental Science & Technology 34: 4908–4916.
Article
CAS
Google Scholar
Marvin-DiPasquale, M. C., J. L. Agee, R. M. Bouse & B. E. Jaffe, 2003. Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California. Environmental Geology 43: 260–267.
CAS
Google Scholar
Mason, R. P., N. M. Lawson, A. L. Lawrence, J. J. Leaner, J. G. Lee & G.-R. Sheu, 1999. Mercury in the Chesapeake Bay. Marine Chemistry 65: 77–96.
Article
CAS
Google Scholar
Mermillod-Blondin, F., R. Rosenberg, F. François-Carcaillet, K. Norling & L. Mauclaire, 2004. Influence of bioturbation by three benthic infaunal species on microbial community and biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36: 271–284.
Article
Google Scholar
Mermillod-Blondin, F., G. Nogaro, T. Datry, F. Malard & J. Gibert, 2005. Do tubificid worms influence the fate of organic matter and pollutants in stormwater sediments? Environmental Pollution 134: 57–69.
PubMed
Article
CAS
Google Scholar
Nogaro, G. & F. Mermillod-Blondin, 2009. Stormwater sediment and bioturbation influences on hydraulic functioning, biogeochemical processes, and pollutant dynamics in laboratory infiltration systems. Environmental Science & Technology 43: 3632–3638.
Article
CAS
Google Scholar
Nogaro, G., F. Mermillod-Blondin, B. Montuelle, J. C. Boisson, J. P. Bedell, A. Ohannessian, B. Volat & J. Gibert, 2007. Influence of a stormwater sediment deposit on microbial and biogeochemical processes in infiltration porous media. Science of the Total Environment 377: 334–348.
PubMed
Article
CAS
Google Scholar
Nogaro, G., F. Mermillod-Blondin, M. H. Valett, F. François-Carcaillet, J.-P. Gaudet, M. Lafont & J. Gibert, 2009. Ecosystem engineering at the sediment–water interface: bioturbation and consumer-substrate interaction. Oecologia 161: 125–138.
PubMed
Article
Google Scholar
Oremland, R. S., C. W. Culbertson & M. R. Winfrey, 1991. Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation. Applied and Environmental Microbiology 57: 130–137.
PubMed
CAS
Google Scholar
Oremland, R. S., L. G. Miller, P. Dowdle, T. Connell & T. Barkay, 1995. Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the Carson River, Nevada. Applied and Environmental Microbiology 61: 2745–2753.
PubMed
CAS
Google Scholar
Pelegri, S. P. & T. H. Blackburn, 1994. Bioturbation effects of the amphipod Corophium volutator on microbial nitrogen transformations in marine sediments. Marine Biology 121: 253–258.
Article
Google Scholar
Rhoads, D. C., 1974. Organism sediment relations on the muddy sea floor. Oceanography and Marine Biology: Annual Review 12: 263–300.
CAS
Google Scholar
Sharp, J. H., R. Benner, L. Bennett, C. A. Carlson, S. E. Fitzwater, E. T. Peltzer & L. M. Tupas, 1995. Analyses of dissolved organic carbon in seawater: the JGOFS EqPac methods comparison. Marine Chemistry 48: 91–108.
Article
CAS
Google Scholar
Shull, D. H., 1997. Mechanisms of infaunal polychaete dispersal and colonization in an intertidal sanflat. Journal of Marine Research 55: 153–179.
Article
Google Scholar
Sobczak, W. V., L. O. Hedin & M. J. Klug, 1998. Relationships between bacterial productivity and organic carbon at a soil–stream interface. Hydrobiologia 386: 45–53.
Article
CAS
Google Scholar
Stocum, E. T. & C. J. Plante, 2006. The effect of artificial defaunation on bacterial assemblages of intertidal sediments. Journal of Experimental Marine Biology and Ecology 337: 147–158.
Article
CAS
Google Scholar
Sunderland, E. M., F. A. P. C. Gobas, A. Heyes, B. A. Branfireun, A. K. Bayer, R. E. Cranston & M. B. Parsons, 2004. Speciation and bioavailability of mercury in well-mixed estuarine sediments. Marine Chemistry 90: 91–105.
Article
CAS
Google Scholar
Thrush, S. F., R. B. Whitlatch, R. D. Pridmore, J. E. Hewitt, V. J. Cummings & M. R. Wilkinson, 1996. Scale-dependent recolonization: the role of sediment stability in a dynamic sandflat habitat. Ecology 77: 2472–2487.
Article
Google Scholar
U.S. EPA, 2007a. Method 6020A: Inductively Coupled Plasma-Mass Spectrometry. U.S. Environmental Protection Agency, Washington, DC.
Google Scholar
U.S. EPA, 2007b. Method 3015A: Microwave Assisted Acid Digestion of Aqueous Samples and Extracts. U.S. Environmental Protection Agency, Washington, DC.
Google Scholar
Visscher, P. T., J. Beukema & H. Van Gemerden, 1992. In situ characterization of sediments: measurements of oxygen and sulfide profiles with a novel combined needle electrode. Limnology and Oceanography 36: 1476–1480.
Article
Google Scholar