Skip to main content

Influence of benthic macrofauna on microbial production of methylmercury in sediments on the New England continental shelf

Abstract

Microbial methylation processes in sediment are an important source of toxic monomethylmercury (MMHg) to aquatic ecosystems. Although bioturbation activities (feeding, digging of galleries, excavations, bioirrigation) by benthic fauna are known to affect many biogeochemical processes, their influence on benthic MMHg production is poorly understood. We investigated the effect of benthic fauna on the microbial production of MMHg in sediments on the continental shelf of the northwest Atlantic Ocean in September 2009. Replicate cores of sieved (control) and unaltered sediment containing native macrofauna were incubated to examine the influence of benthic macrofauna on net MMHg production, potential gross rates of Hg methylation, sediment reworking, dissolved oxygen and organic carbon concentrations, and microbial metabolic activities. The presence of macrofauna stimulated aerobic microbial respiration and net MMHg production, but had no observed effect on short-term gross rates of Hg methylation. This suggests that bioturbation may promote net MMHg production by inhibiting demethylating microorganisms, although overall community metabolism was increased. Results from this work emphasize the need to enhance our knowledge and understanding of the interactions among benthic fauna, microorganisms, and geochemistry in affecting MMHg production.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Aller, R. C., 1994. Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chemical Geology 114: 331–345.

    Article  CAS  Google Scholar 

  • Aller, R. C. & J. Y. Yingst, 1978. Biogeochemistry of tube-dwellings: a study of the sedentary polychaete Amphitrite ornata. Journal of Marine Research 36: 201–254.

    CAS  Google Scholar 

  • Balcom, P. H., W. F. Fitzgerald, G. M. Vandal, C. H. Lamborg, K. R. Rolfhus, C. S. Langer & C. R. Hammerschmidt, 2004. Mercury sources and cycling in the Connecticut River and Long Island Sound. Marine Chemistry 90: 53–74.

    Article  CAS  Google Scholar 

  • Balcom, P. H., C. R. Hammerschmidt, W. F. Fitzgerald, C. H. Lamborg & J. S. O’Connor, 2008. Seasonal distributions and cycling of mercury and methylmercury in the waters of New York/New Jersey Harbor Estuary. Marine Chemistry 109: 1–17.

    Article  CAS  Google Scholar 

  • Battin, T. J., 1997. Assessment of fluorescein diacetate hydrolysis as a measure of total esterase activity in natural stream sediment biofilms. Science of the Total Environment 198: 51–60.

    Article  CAS  Google Scholar 

  • Benoit, J. M., C. C. Gilmour, R. P. Mason & A. Heyes, 1999. Sulfide controls on mercury speciation and bioavailability to methylating bacteria in sediment pore waters. Environmental Science & Technology 33: 951–957.

    Article  CAS  Google Scholar 

  • Benoit, J. M., D. H. Shull, R. M. Harvey & S. A. Beal, 2009. Effect of bioirrigation on sediment–water exchange of methylmercury in Boston Harbor, Massachusetts. Environmental Science & Technology 43: 3669–3674.

    Article  CAS  Google Scholar 

  • Berner, R. A. & J. T. Westrich, 1985. Bioturbation and the early diagenesis of carbon and sulfur. American Journal of Science 285: 193–206.

    Article  CAS  Google Scholar 

  • Bloom, N. S., J. A. Colman & L. Barber, 1997. Artifact formation of methylmercury during aqueous distillation and alternative techniques for the extraction of methyl mercury from environmental samples. Fresenius Journal of Analytical Chemistry 358: 371–377.

    Article  CAS  Google Scholar 

  • Brohon, B., C. Delolme & R. Gourdon, 2001. Complementarity of bioassays and microbial activity measurements for the evaluation of hydrocarbon-contaminated soils quality. Soil Biology and Biochemistry 33: 883–891.

    Article  CAS  Google Scholar 

  • Compeau, G. C. & R. Bartha, 1985. Sulfate-reducing bacteria: principal methylators of mercury in anoxic estuarine sediment. Applied and Environmental Microbiology 50: 498–502.

    PubMed  CAS  Google Scholar 

  • Drott, A., L. Lambertsson, E. Björn & U. Skyllberg, 2008. Do potential methylation rates reflect accumulated methyl mercury in contaminated sediments? Environmental Science & Technology 42: 153–158.

    Article  CAS  Google Scholar 

  • Findlay, R. H., M. B. Trexler, J. B. Guckert & D. C. White, 1990. Laboratory study of disturbance in marine sediments: response of a microbial community. Marine Ecology Progress Series 62: 121–133.

    Article  Google Scholar 

  • Fleming, E. J., E. E. Mack, P. G. Green & D. C. Nelson, 2006. Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Applied and Environmental Microbiology 72: 457–464.

    PubMed  Article  CAS  Google Scholar 

  • Fontvieille, D., A. Outaguerouine & D. R. Thevenot, 1992. Fluoresceine diacetate hydrolysis as a measure of microbial activity in aquatic systems. Application to activated sludge. Environmental Technology 13: 531–540.

    Article  CAS  Google Scholar 

  • Gerino, M., 1990. The effects of bioturbation on particle redistribution in Mediterranean coastal sediment – preliminary results. Hydrobiologia 207: 251–258.

    Article  Google Scholar 

  • Gilbert, F., P. Bonin & G. Stora, 1995. Effect of bioturbation on denitrification in a marine sediment from the West Mediterranean littoral. Hydrobiologia 304: 49–58.

    Article  CAS  Google Scholar 

  • Gilbert, F., G. Stora & P. Bonin, 1998. Influence of bioturbation on denitrification activity in Mediterranean coastal sediments: an in situ experimental approach. Marine Ecology Progress Series 163: 99–107.

    Article  CAS  Google Scholar 

  • Gill, G. A. & W. F. Fitzgerald, 1985. Mercury sampling of open ocean waters at the picomolar level. Deep Sea Research 32: 287–297.

    Article  CAS  Google Scholar 

  • Gilmour, C. C. & G. S. Riedel, 1995. Measurement of Hg methylation in sediments using high specific-activity 203Hg and ambient incubation. Water, Air, & Soil Pollution 80: 747–756.

    Article  CAS  Google Scholar 

  • Gilmour, C. C., E. A. Henry & R. Mitchell, 1992. Sulfate stimulation of mercury methylation in freshwater sediments. Environmental Science & Technology 26: 2281–2287.

    Article  CAS  Google Scholar 

  • Goldhaber, M. B., R. C. Aller, J. K. Cochran, J. K. Rosenfeld, C. S. Martens & R. A. Berner, 1977. Sulfate reduction, diffusion, and bioturbation in Long Island Sound sediments: report of the FOAM group. American Journal of Science 277: 193–237.

    Article  CAS  Google Scholar 

  • Hammerschmidt, C. R. & W. F. Fitzgerald, 2004. Geochemical controls on the production and distribution of methylmercury in near-shore marine sediments. Environmental Science & Technology 38: 1487–1495.

    Article  CAS  Google Scholar 

  • Hammerschmidt, C. R. & W. F. Fitzgerald, 2006. Methylmercury cycling in sediment on the continental shelf of southern New England. Geochimica et Cosmochimica Acta 70: 918–930.

    Article  CAS  Google Scholar 

  • Hammerschmidt, C. R. & W. F. Fitzgerald, 2008. Sediment–water exchange of methylmercury estimated with shipboard benthic flux chambers in New York/New Jersey Harbor. Marine Chemistry 109: 86–97.

    Article  CAS  Google Scholar 

  • Hammerschmidt, C. R., W. F. Fitzgerald, C. H. Lamborg, P. H. Balcom & P. T. Visscher, 2004. Biogeochemistry of methylmercury in sediments of Long Island Sound. Marine Chemistry 90: 31–52.

    Article  CAS  Google Scholar 

  • Hansen, K., G. M. King & E. Kristensen, 1996. Impact of the soft-shelled clam Mya arenaria on sulfate reduction in an intertidal sediment. Aquatic Microbial Ecology 10: 181–194.

    Article  Google Scholar 

  • Hedin, L. O., 1990. Factors controlling sediment community respiration in woodland stream ecosystems. Oikos 57: 94–105.

    Article  Google Scholar 

  • Heiri, O., A. F. Lotter & G. Lemcke, 2001. Loss on ignition as a method for estimation organic and carbonate content in sediments: reproducibility and comparability of results. Journal of Paleolimnology 25: 101–110.

    Article  Google Scholar 

  • Heyes, A., R. P. Mason, E.-H. Kim & E. Sunderland, 2006. Mercury methylation in estuaries: insights from using measuring rates using stable mercury isotopes. Marine Chemistry 102: 134–147.

    Article  CAS  Google Scholar 

  • Hines, M. E. & G. E. Jones, 1985. Microbial biogeochemistry and bioturbation in the sediments of Great Bay, New Hampshire. Estuarine, Coastal and Shelf Science 20: 729–742.

    Article  CAS  Google Scholar 

  • Hintelmann, H. & R. D. Evans, 1997. Application of stable isotopes in environmental tracer studies – measurement of monomethylmercury (CH3Hg+) by isotope dilution ICP-MS and detection of species transformation. Fresenius Journal of Analytical Chemistry 358: 378–385.

    Article  CAS  Google Scholar 

  • Hintelmann, H., K. Keppel-Jones & R. D. Evans, 2000. Constants of mercury methylation and demethylation rates in sediments and comparison of tracer and ambient mercury availability. Environmental Toxicology & Chemistry 19: 2204–2211.

    Article  CAS  Google Scholar 

  • Holdren, G. C. & D. E. Armstrong, 1980. Factors affecting phosphorus release from intact lake sediment cores. Environmental Science & Technology 14: 79–87.

    Article  Google Scholar 

  • Hollweg, T. A., C. C. Gilmour & R. P. Mason, 2009. Methylmercury production in sediments of Chesapeake Bay and the mid-Atlantic continental margin. Marine Chemistry 114: 86–101.

    Article  CAS  Google Scholar 

  • Kerin, E. J., C. C. Gilmour, E. Roden, M. T. Suzuki, J. D. Coates & R. P. Mason, 2006. Mercury methylation by dissimilatory iron-reducing bacteria. Applied and Environmental Microbiology 72: 7919–7921.

    PubMed  Article  CAS  Google Scholar 

  • Krantzberg, G., 1985. The influence of bioturbation on physical, chemical and biological parameters in aquatic environments: a review. Environmental Pollution 39: 99–122.

    CAS  Google Scholar 

  • Kristensen, E., 2000. Organic matter diagenesis at the oxic/anoxic interface in coastal marine sediments, with emphasis on the role of burrowing animals. Hydrobiologia 426: 1–24.

    Article  CAS  Google Scholar 

  • Kristensen, E. & K. Hansen, 1999. Transport of carbon dioxide and ammonium in bioturbated (Nereis diversicolor) coastal, marine sediments. Biogeochemistry 45: 147–168.

    Google Scholar 

  • Langer, C. S., W. F. Fitzgerald, P. T. Visscher & G. M. Vandal, 2001. Biogeochemical cycling of methylmercury at Barn Island Salt Marsh, Stonington, CT, USA. Wetlands Ecology and Management 9: 267–295.

    Article  Google Scholar 

  • Marvin-Dipasquale, M. C., J. L. Agee, C. McGowan, R. S. Oremland, M. Thomas, D. Krabbenhoft & C. C. Gilmour, 2000. Methyl-mercury degradation pathways: a comparison among three mercury-impacted ecosystems. Environmental Science & Technology 34: 4908–4916.

    Article  CAS  Google Scholar 

  • Marvin-DiPasquale, M. C., J. L. Agee, R. M. Bouse & B. E. Jaffe, 2003. Microbial cycling of mercury in contaminated pelagic and wetland sediments of San Pablo Bay, California. Environmental Geology 43: 260–267.

    CAS  Google Scholar 

  • Mason, R. P., N. M. Lawson, A. L. Lawrence, J. J. Leaner, J. G. Lee & G.-R. Sheu, 1999. Mercury in the Chesapeake Bay. Marine Chemistry 65: 77–96.

    Article  CAS  Google Scholar 

  • Mermillod-Blondin, F., R. Rosenberg, F. François-Carcaillet, K. Norling & L. Mauclaire, 2004. Influence of bioturbation by three benthic infaunal species on microbial community and biogeochemical processes in marine sediment. Aquatic Microbial Ecology 36: 271–284.

    Article  Google Scholar 

  • Mermillod-Blondin, F., G. Nogaro, T. Datry, F. Malard & J. Gibert, 2005. Do tubificid worms influence the fate of organic matter and pollutants in stormwater sediments? Environmental Pollution 134: 57–69.

    PubMed  Article  CAS  Google Scholar 

  • Nogaro, G. & F. Mermillod-Blondin, 2009. Stormwater sediment and bioturbation influences on hydraulic functioning, biogeochemical processes, and pollutant dynamics in laboratory infiltration systems. Environmental Science & Technology 43: 3632–3638.

    Article  CAS  Google Scholar 

  • Nogaro, G., F. Mermillod-Blondin, B. Montuelle, J. C. Boisson, J. P. Bedell, A. Ohannessian, B. Volat & J. Gibert, 2007. Influence of a stormwater sediment deposit on microbial and biogeochemical processes in infiltration porous media. Science of the Total Environment 377: 334–348.

    PubMed  Article  CAS  Google Scholar 

  • Nogaro, G., F. Mermillod-Blondin, M. H. Valett, F. François-Carcaillet, J.-P. Gaudet, M. Lafont & J. Gibert, 2009. Ecosystem engineering at the sediment–water interface: bioturbation and consumer-substrate interaction. Oecologia 161: 125–138.

    PubMed  Article  Google Scholar 

  • Oremland, R. S., C. W. Culbertson & M. R. Winfrey, 1991. Methylmercury decomposition in sediments and bacterial cultures: involvement of methanogens and sulfate reducers in oxidative demethylation. Applied and Environmental Microbiology 57: 130–137.

    PubMed  CAS  Google Scholar 

  • Oremland, R. S., L. G. Miller, P. Dowdle, T. Connell & T. Barkay, 1995. Methylmercury oxidative degradation potentials in contaminated and pristine sediments of the Carson River, Nevada. Applied and Environmental Microbiology 61: 2745–2753.

    PubMed  CAS  Google Scholar 

  • Pelegri, S. P. & T. H. Blackburn, 1994. Bioturbation effects of the amphipod Corophium volutator on microbial nitrogen transformations in marine sediments. Marine Biology 121: 253–258.

    Article  Google Scholar 

  • Rhoads, D. C., 1974. Organism sediment relations on the muddy sea floor. Oceanography and Marine Biology: Annual Review 12: 263–300.

    CAS  Google Scholar 

  • Sharp, J. H., R. Benner, L. Bennett, C. A. Carlson, S. E. Fitzwater, E. T. Peltzer & L. M. Tupas, 1995. Analyses of dissolved organic carbon in seawater: the JGOFS EqPac methods comparison. Marine Chemistry 48: 91–108.

    Article  CAS  Google Scholar 

  • Shull, D. H., 1997. Mechanisms of infaunal polychaete dispersal and colonization in an intertidal sanflat. Journal of Marine Research 55: 153–179.

    Article  Google Scholar 

  • Sobczak, W. V., L. O. Hedin & M. J. Klug, 1998. Relationships between bacterial productivity and organic carbon at a soil–stream interface. Hydrobiologia 386: 45–53.

    Article  CAS  Google Scholar 

  • Stocum, E. T. & C. J. Plante, 2006. The effect of artificial defaunation on bacterial assemblages of intertidal sediments. Journal of Experimental Marine Biology and Ecology 337: 147–158.

    Article  CAS  Google Scholar 

  • Sunderland, E. M., F. A. P. C. Gobas, A. Heyes, B. A. Branfireun, A. K. Bayer, R. E. Cranston & M. B. Parsons, 2004. Speciation and bioavailability of mercury in well-mixed estuarine sediments. Marine Chemistry 90: 91–105.

    Article  CAS  Google Scholar 

  • Thrush, S. F., R. B. Whitlatch, R. D. Pridmore, J. E. Hewitt, V. J. Cummings & M. R. Wilkinson, 1996. Scale-dependent recolonization: the role of sediment stability in a dynamic sandflat habitat. Ecology 77: 2472–2487.

    Article  Google Scholar 

  • U.S. EPA, 2007a. Method 6020A: Inductively Coupled Plasma-Mass Spectrometry. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • U.S. EPA, 2007b. Method 3015A: Microwave Assisted Acid Digestion of Aqueous Samples and Extracts. U.S. Environmental Protection Agency, Washington, DC.

    Google Scholar 

  • Visscher, P. T., J. Beukema & H. Van Gemerden, 1992. In situ characterization of sediments: measurements of oxygen and sulfide profiles with a novel combined needle electrode. Limnology and Oceanography 36: 1476–1480.

    Article  Google Scholar 

Download references

Acknowledgments

We thank the following individuals who assisted with either sample collection or analysis: Lisa Romas, Melissa Tabatchnick, Katlin Bowman, Avani Naik, Matt Konkler, Jaclyn Klaus, Deepthi Nalluri, and the captain and crew of the R/V Endeavor. We also thank Dr. P. Viaroli and two anonymous referees for their valuable comments on the manuscript and their constructive suggestions. This research was supported by the U.S. National Science Foundation (OCE-0752116).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geraldine Nogaro.

Additional information

Handling editor: Pierluigi Viaroli

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nogaro, G., Hammerschmidt, C.R. Influence of benthic macrofauna on microbial production of methylmercury in sediments on the New England continental shelf. Hydrobiologia 701, 289–299 (2013). https://doi.org/10.1007/s10750-012-1286-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1286-7

Keywords

  • Mercury
  • Methylation
  • Bioturbation
  • Marine sediments
  • Biogeochemistry