Advertisement

Hydrobiologia

, Volume 715, Issue 1, pp 19–27 | Cite as

Prey (Moina macrocopa) population density drives emigration rate of its predator (Trichocorixa verticalis) in a rock-pool metacommunity

  • Joseph L. SimonisEmail author
CLADOCERA

Abstract

Dispersal connects spatially separated local food webs at a larger, metacommunity scale, and as a result, dispersal may both influence and be influenced by local food-web dynamics. Here, I focused on a rock-pool metacommunity and used a combination of observational, experimental, and theoretical approaches to explore the role of local prey (Moina macrocopa) density on the rate of emigration by their predator (Trichocorixa verticalis) and in turn, the effect of predator emigration on the per capita predation rate experienced by local prey populations. A lab feeding experiment quantified predation rates, demonstrating that indeed adult T. verticalis are voracious predators of M. macrocopa. M. macrocopa densities vary over five orders of magnitude across both space and time in rock pools, and a mesocosm experiment showed that this variation significantly influences T. verticalis emigration: predators emigrated more rapidly when prey were in lower densities. Finally, computer simulations demonstrated that this pattern of dispersal by T. verticalis has the potential to relieve local M. macrocopa populations from predation when the prey are at low densities, thereby reducing the likelihood that local M. macrocopa populations will be driven extinct by predation from T. verticalis.

Keywords

Corixidae Density-dependence Dispersal Isles of Shoals Per capita predation risk Predator–prey metapopulation 

Notes

Acknowledgments

I am incredibly grateful to P. Spaak, M. Manca, N. Hairston, Jr. (NGH), the Orenstein Family, and the Cornell Ecology and Evolutionary Biology Department for the opportunity and funding to participate in this Symposium. I also thank the staff of the Shoals Marine Lab (SML), especially director W. Bemis, for logistical assistance with these studies and J. Morin for preliminary research on the rock–pool system. The NGH and A. Flecker lab groups provided helpful discussions on this topic and S. Collins, S. Simonis, and NGH gave helpful comments on an earlier version of this manuscript. This study was supported financially by SML, the Cornell University Biogeochemistry and Environmental Biocomplexity Program, the Andrew W. Mellon Foundation, the National Science Foundation (NSF, DEB-1110545), and an NSF Graduate Research Fellowship awarded to JLS. This is contribution #161 from the Shoals Marine Laboratory.

References

  1. Bates, D., M. Maechler & B. Bolker, 2011. Lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4.
  2. Bernstein, C., 1984. Prey and predator emigration responses in the acarine system Tetranychus urticae-Phytoseiulus persimilis. Oecologia 61: 134–142.CrossRefGoogle Scholar
  3. Bennetts, R. E. & W. M. Kitchens, 2000. Factors influencing movement probabilities of a nomadic food specialist: proximate foraging benefits or ultimate gains from exploration? Oikos 91: 459–467.CrossRefGoogle Scholar
  4. Bohonak, A. J. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.CrossRefGoogle Scholar
  5. Bolker, B. & R Development Core Team, 2001. bbmle: tools for general maximum likelihood estimation. R package version 0.9.7. http://CRAN.R-project.org/package=bbmle.
  6. Bowler, D. E. & T. G. Benton, 2005. Causes and consequences of animal dispersal strategies: relating individual behavior to spatial dynamics. Biological Reviews 80: 205–225.PubMedCrossRefGoogle Scholar
  7. Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York.Google Scholar
  8. Charnov, E. L., 1976. Optimal foraging, the Marginal Value Theorem. Theoretical Population Biology 9: 129–136.PubMedCrossRefGoogle Scholar
  9. Clobert, J., E. Danchin, A. A. Dhondt & J. D. Nichols, 2001. Dispersal. Oxford University Press, New York.Google Scholar
  10. Dillon, P. M., 1985. Chironomid larval size and case presence influence capture success achieved by dragonfly larvae. Freshwater Invertebrate Biology 4: 22–29.CrossRefGoogle Scholar
  11. French, D. R. & J. M. J. Travis, 2001. Density-dependent dispersal in host-parasitoid assemblages. Oikos 95: 125–135.CrossRefGoogle Scholar
  12. Hanski, I., 1999. Metapopulation ecology. Oxford University Press, New York.Google Scholar
  13. Hauzy, C., F. D. Hulot, A. Gins & M. Loreau, 2007. Intra- and interspecific density-dependent dispersal in an aquatic prey-predator system. Journal of Animal Ecology 76: 552–558.PubMedCrossRefGoogle Scholar
  14. Hauzy, C., M. Gauduchon, F. D. Hulot & M. Loreau, 2010. Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities. Journal of Theoretical Biology 266: 458–469.PubMedCrossRefGoogle Scholar
  15. Holling, C. S., 1959. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. The Canadian Entomologist 91: 293–320.CrossRefGoogle Scholar
  16. Holyoak, M., M. A. Leibold & R. D. Holt, 2005. Metacommunities: spatial dynamics and ecological communities. Chicago University Press, Chicago.Google Scholar
  17. Ives, A. R., P. Kareiva & R. Perry, 1993. Response of a predator to variation in prey density at three hierarchical scales: lady beetles feeding on aphids. Ecology 74: 1929–1938.CrossRefGoogle Scholar
  18. Kelts, L. J., 1979. Ecology of a tidal marsh corixid, Trichocorixa verticalis (Insecta, Hemiptera). Hydrobiologia 64: 37–57.CrossRefGoogle Scholar
  19. Kennedy, P. L. & J. M. Ward, 2003. Effects of experimental food supplementation on movements of juvenile northern goshawks (Accipiter gentilis atricapillus). Oecologia 134: 284–291.PubMedGoogle Scholar
  20. Kuussaari, M., M. Nieminen & I. Hanski, 1996. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. Journal of Animal Ecology 65: 791–801.CrossRefGoogle Scholar
  21. McCann, K. S., J. B. Rasmussen & J. Umbanhowar, 2005. The dynamics of spatially coupled food webs. Ecology Letters 8: 513–523.PubMedCrossRefGoogle Scholar
  22. Morin, P. J., 1999. Community Ecology. Blackwell Publishing, Malden, MA, USA.Google Scholar
  23. Murdoch, W. W. & A. Stewart-Oaten, 1989. Aggregation by parasitoids and predators: effects on equilibrium and stability. American Naturalist 134: 288–310.CrossRefGoogle Scholar
  24. Nunes, S., P. A. Zuggar, A. L. Engh, K. O. Reinhart & K. E. Holekamp, 1997. Why do female Belding’s ground squirrels disperse away from food resources? Behavioral and Ecological Sociobiology 40: 199–207.CrossRefGoogle Scholar
  25. Pinheiro, J. C. & D. M. Bates, 2000. Mixed-Effects Models in S and S-PLUS. Springer, New York.CrossRefGoogle Scholar
  26. R Core Development Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.Google Scholar
  27. Readshaw, J. L., 1973. The numerical response of predators to prey density. Journal of Applied Ecology 10: 342–351.Google Scholar
  28. Rogers, D. J., 1972. Random search and insect population models. Journal of Animal Ecology 41: 369–383.CrossRefGoogle Scholar
  29. Vanschoenwinkel, B., S. Gielen, H. Vandewaerde, M. Seaman & L. Brendonck, 2008. Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 81: 567–577.CrossRefGoogle Scholar
  30. Wurtsbaugh, W. A., 1992. Food-web modification by an invertebrate predator in the Great Salt Lake (USA). Oecologia 89: 168–175.Google Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Ecology and Evolutionary BiologyCornell UniversityIthacaUSA

Personalised recommendations