Skip to main content
Log in

Prey (Moina macrocopa) population density drives emigration rate of its predator (Trichocorixa verticalis) in a rock-pool metacommunity

  • CLADOCERA
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Dispersal connects spatially separated local food webs at a larger, metacommunity scale, and as a result, dispersal may both influence and be influenced by local food-web dynamics. Here, I focused on a rock-pool metacommunity and used a combination of observational, experimental, and theoretical approaches to explore the role of local prey (Moina macrocopa) density on the rate of emigration by their predator (Trichocorixa verticalis) and in turn, the effect of predator emigration on the per capita predation rate experienced by local prey populations. A lab feeding experiment quantified predation rates, demonstrating that indeed adult T. verticalis are voracious predators of M. macrocopa. M. macrocopa densities vary over five orders of magnitude across both space and time in rock pools, and a mesocosm experiment showed that this variation significantly influences T. verticalis emigration: predators emigrated more rapidly when prey were in lower densities. Finally, computer simulations demonstrated that this pattern of dispersal by T. verticalis has the potential to relieve local M. macrocopa populations from predation when the prey are at low densities, thereby reducing the likelihood that local M. macrocopa populations will be driven extinct by predation from T. verticalis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bates, D., M. Maechler & B. Bolker, 2011. Lme4: Linear mixed-effects models using S4 classes. R package version 0.999375-42. http://CRAN.R-project.org/package=lme4.

  • Bernstein, C., 1984. Prey and predator emigration responses in the acarine system Tetranychus urticae-Phytoseiulus persimilis. Oecologia 61: 134–142.

    Article  Google Scholar 

  • Bennetts, R. E. & W. M. Kitchens, 2000. Factors influencing movement probabilities of a nomadic food specialist: proximate foraging benefits or ultimate gains from exploration? Oikos 91: 459–467.

    Article  Google Scholar 

  • Bohonak, A. J. & D. G. Jenkins, 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6: 783–796.

    Article  Google Scholar 

  • Bolker, B. & R Development Core Team, 2001. bbmle: tools for general maximum likelihood estimation. R package version 0.9.7. http://CRAN.R-project.org/package=bbmle.

  • Bowler, D. E. & T. G. Benton, 2005. Causes and consequences of animal dispersal strategies: relating individual behavior to spatial dynamics. Biological Reviews 80: 205–225.

    Article  PubMed  Google Scholar 

  • Burnham, K. P. & D. R. Anderson, 2002. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. Springer, New York.

    Google Scholar 

  • Charnov, E. L., 1976. Optimal foraging, the Marginal Value Theorem. Theoretical Population Biology 9: 129–136.

    Article  PubMed  CAS  Google Scholar 

  • Clobert, J., E. Danchin, A. A. Dhondt & J. D. Nichols, 2001. Dispersal. Oxford University Press, New York.

    Google Scholar 

  • Dillon, P. M., 1985. Chironomid larval size and case presence influence capture success achieved by dragonfly larvae. Freshwater Invertebrate Biology 4: 22–29.

    Article  Google Scholar 

  • French, D. R. & J. M. J. Travis, 2001. Density-dependent dispersal in host-parasitoid assemblages. Oikos 95: 125–135.

    Article  Google Scholar 

  • Hanski, I., 1999. Metapopulation ecology. Oxford University Press, New York.

    Google Scholar 

  • Hauzy, C., F. D. Hulot, A. Gins & M. Loreau, 2007. Intra- and interspecific density-dependent dispersal in an aquatic prey-predator system. Journal of Animal Ecology 76: 552–558.

    Article  PubMed  Google Scholar 

  • Hauzy, C., M. Gauduchon, F. D. Hulot & M. Loreau, 2010. Density-dependent dispersal and relative dispersal affect the stability of predator-prey metacommunities. Journal of Theoretical Biology 266: 458–469.

    Article  PubMed  Google Scholar 

  • Holling, C. S., 1959. The components of predation as revealed by a study of small mammal predation of the European pine sawfly. The Canadian Entomologist 91: 293–320.

    Article  Google Scholar 

  • Holyoak, M., M. A. Leibold & R. D. Holt, 2005. Metacommunities: spatial dynamics and ecological communities. Chicago University Press, Chicago.

    Google Scholar 

  • Ives, A. R., P. Kareiva & R. Perry, 1993. Response of a predator to variation in prey density at three hierarchical scales: lady beetles feeding on aphids. Ecology 74: 1929–1938.

    Article  Google Scholar 

  • Kelts, L. J., 1979. Ecology of a tidal marsh corixid, Trichocorixa verticalis (Insecta, Hemiptera). Hydrobiologia 64: 37–57.

    Article  Google Scholar 

  • Kennedy, P. L. & J. M. Ward, 2003. Effects of experimental food supplementation on movements of juvenile northern goshawks (Accipiter gentilis atricapillus). Oecologia 134: 284–291.

    PubMed  Google Scholar 

  • Kuussaari, M., M. Nieminen & I. Hanski, 1996. An experimental study of migration in the Glanville fritillary butterfly Melitaea cinxia. Journal of Animal Ecology 65: 791–801.

    Article  Google Scholar 

  • McCann, K. S., J. B. Rasmussen & J. Umbanhowar, 2005. The dynamics of spatially coupled food webs. Ecology Letters 8: 513–523.

    Article  PubMed  CAS  Google Scholar 

  • Morin, P. J., 1999. Community Ecology. Blackwell Publishing, Malden, MA, USA.

    Google Scholar 

  • Murdoch, W. W. & A. Stewart-Oaten, 1989. Aggregation by parasitoids and predators: effects on equilibrium and stability. American Naturalist 134: 288–310.

    Article  Google Scholar 

  • Nunes, S., P. A. Zuggar, A. L. Engh, K. O. Reinhart & K. E. Holekamp, 1997. Why do female Belding’s ground squirrels disperse away from food resources? Behavioral and Ecological Sociobiology 40: 199–207.

    Article  Google Scholar 

  • Pinheiro, J. C. & D. M. Bates, 2000. Mixed-Effects Models in S and S-PLUS. Springer, New York.

    Book  Google Scholar 

  • R Core Development Team, 2011. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria.

    Google Scholar 

  • Readshaw, J. L., 1973. The numerical response of predators to prey density. Journal of Applied Ecology 10: 342–351.

    Google Scholar 

  • Rogers, D. J., 1972. Random search and insect population models. Journal of Animal Ecology 41: 369–383.

    Article  Google Scholar 

  • Vanschoenwinkel, B., S. Gielen, H. Vandewaerde, M. Seaman & L. Brendonck, 2008. Relative importance of different dispersal vectors for small aquatic invertebrates in a rock pool metacommunity. Ecography 81: 567–577.

    Article  Google Scholar 

  • Wurtsbaugh, W. A., 1992. Food-web modification by an invertebrate predator in the Great Salt Lake (USA). Oecologia 89: 168–175.

    Google Scholar 

Download references

Acknowledgments

I am incredibly grateful to P. Spaak, M. Manca, N. Hairston, Jr. (NGH), the Orenstein Family, and the Cornell Ecology and Evolutionary Biology Department for the opportunity and funding to participate in this Symposium. I also thank the staff of the Shoals Marine Lab (SML), especially director W. Bemis, for logistical assistance with these studies and J. Morin for preliminary research on the rock–pool system. The NGH and A. Flecker lab groups provided helpful discussions on this topic and S. Collins, S. Simonis, and NGH gave helpful comments on an earlier version of this manuscript. This study was supported financially by SML, the Cornell University Biogeochemistry and Environmental Biocomplexity Program, the Andrew W. Mellon Foundation, the National Science Foundation (NSF, DEB-1110545), and an NSF Graduate Research Fellowship awarded to JLS. This is contribution #161 from the Shoals Marine Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph L. Simonis.

Additional information

Guest editors: Marina Manca & Piet Spaak / Cladocera: Proceedings of the 9th International Symposium on Cladocera

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simonis, J.L. Prey (Moina macrocopa) population density drives emigration rate of its predator (Trichocorixa verticalis) in a rock-pool metacommunity. Hydrobiologia 715, 19–27 (2013). https://doi.org/10.1007/s10750-012-1268-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1268-9

Keywords

Navigation