Advertisement

Hydrobiologia

, Volume 701, Issue 1, pp 99–116 | Cite as

Geometric shape as a trait to study phytoplankton distributions in aquatic ecosystems

  • Elena StancaEmail author
  • Maria Cellamare
  • Alberto Basset
Primary Research Paper

Abstract

The geometric shape is traditionally used to calculate phytoplankton cell measurements (e.g. biovolume), but it can also play an important role in determining community distributions. Little is known about how geometric shapes relate to other morphological traits or to the environment. We explored whether shapes and related morphological traits are selected by environmental forcing. For this, samples were collected seasonally at 21 stations in coastal-marine waters of the Salento Peninsula (Italy). Phytoplankton taxa were classified in terms of geometric shape, biovolume (organism size) and surface-to-volume ratio (S:V). The relationship between greatest axial linear dimension (GALD) and S:V was assessed for each shape. A Canonical Correspondence Analysis (CCA) was performed to evaluate phytoplankton shape distribution on temporal and spatial scales. Phytoplankton community was characterized by high morphological diversity. GALD and S:V were inversely related in most of the shapes. CCA showed that phytoplankton shape distribution was influenced more by seasonal than by spatial variation: elongated shapes characterized the cold period; rounded and combined shapes the warmer period. Most of the shapes showed conservatism of the S:V and trade-off with the size. Geometric shapes represent an interesting feature to be considered in trait-based approaches to study phytoplankton distributions in aquatic ecosystems.

Keywords

Phytoplankton traits Geometric shape Organism size Surface-to-volume ratio Greatest axial linear dimension Coastal-marine waters 

Notes

Acknowledgments

This study was funded by grants from the Italian Ministry of Instruction, University and Research (MIUR), Fondo per gli Investimenti della Ricerca di Base (FIRB), the EU and Puglia regional administration as part of the INTERREG II Italy–Greece project. We are grateful to A. Fiocca for phytoplankton analysis and C. Ianni and N. Ruggieri for water column chemical data. We thank George Metcalf for revising the English text. We acknowledge three anonymous reviewers whose comments and criticisms improved significantly this manuscript.

References

  1. Banse, K., 1976. Rates of growth, respiration and photosynthesis of unicellular algae as related to cell-size-a review. Journal of Phycology 12: 135–140.Google Scholar
  2. Chisholm, S. W., 1992. Phytoplankton size. In Falkowski, P. G. & A. D. Woodhead (eds), Primary productivity and biogeochemical cycles in the sea. Plenum Press, New York.Google Scholar
  3. Chrétiennot-Dinet, M. J., 1990. Atlas du Phytoplancton Marin Vol.III: Chlorarachniophycées, Chlorophycées, Chrysophycées, Cryptophycées, Euglenophycées, Eustigmatophycées, Prasinophycées, Prymnésiophycées, Rhodophycées et Tribophycées. Edition du CNRS, Paris.Google Scholar
  4. Cupp, E. E., 1977. Marine Plankton Diatoms of the West Coast of North America. Otto Koeltz Science Publishers, Koenigstein.Google Scholar
  5. Dodge, J. D., 1982. Marine Dinoflagellates of the British Isles. Her Majesty’s Stationery Office, London.Google Scholar
  6. Field, C. B., M. J. Behrenfeld, J. T. Randerson & P. G. Falkowski, 1998. Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281: 237–240.PubMedCrossRefGoogle Scholar
  7. Finkel, Z. V., J. Beardall, K. J. Flynn, A. Quigg, T. A. V. Rees & J. A. Raven, 2010. Phytoplankton in a changing world: cell size and elemental stoichiometry. Journal of Plankton Research 32: 119–137.CrossRefGoogle Scholar
  8. Fonseca, B. M. & C. E. D. M. Bicudo, 2010. How important can the presence/absence of macrophytes be in determining phytoplankton strategies in two tropical shallow reservoirs with different trophic status? Journal of Plankton Research 32: 31–46.CrossRefGoogle Scholar
  9. Grover, J. P., 1989. Influence of cell shape and size on algal competitive ability. Journal of Phycology 25: 402–405.CrossRefGoogle Scholar
  10. Hansen, H. P. & H. Grasshoff, 1983. Automated chemical analysis. In Grasshoff, K., M. Ehrardt & K. Kremling (eds), Methods of Sea Water Analysis. Verlag Chemie, Weinheim: 347–379.Google Scholar
  11. Hillebrand, H., C.-D. Dürselen, D. Kirschtel, U. Pollingher & T. Zohary, 1999. Biovolume calculation for pelagic and benthic microalgae. Journal of Phycology 35: 403–424.CrossRefGoogle Scholar
  12. Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems. Cambridge University Press, Melbourne.CrossRefGoogle Scholar
  13. Kruk, C., V. L. M. Huszar, E. Peeters, S. Bonilla, L. Costa, M. Lurling, C. S. Reynolds & M. Scheffer, 2010. A morphological classification capturing functional variation in phytoplankton. Freshwater Biology 55: 614–627.CrossRefGoogle Scholar
  14. Lepš, J. & P. Šmilauer, 2003. Multivariate Analysis of Ecological Data Using Canoco. Cambridge University Press, Cambridge.Google Scholar
  15. Lewis, W. M., 1976. Surface/volume ratio: implications for phytoplankton morphology. Science 192: 885–887.PubMedCrossRefGoogle Scholar
  16. Litchman, E. & C. A. Klausmeier, 2008. Trait-based community ecology of phytoplankton. The Annual Review of Ecology, Evolution, and Systematics 39: 615–639.CrossRefGoogle Scholar
  17. Litchman, E., C. A. Klausmeier, O. M. Schofield & P. G. Falkowski, 2007. The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecology Letters 10: 1170–1181.PubMedCrossRefGoogle Scholar
  18. Litchman, E., P. de Tezanos Pinto, C. A. Klausmeier, M. K. Thomas & K. Yoshiyama, 2010. Linking traits to species diversity and community structure in phytoplankton. Hydrobiologia 653: 15–28.CrossRefGoogle Scholar
  19. Margalef, R., 1978. Life forms of phytoplankton as survival alternatives in an unstable environment. Oceanologica Acta 1: 493–509.Google Scholar
  20. Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Limnology and Oceanography 45: 569–579.CrossRefGoogle Scholar
  21. Morabito, G., A. Oggioni, E. Caravati & P. Panzani, 2007. Seasonal morphological plasticity of phytoplankton in Lago Maggiore (N. Italy). Hydrobiologia 578: 47–57.CrossRefGoogle Scholar
  22. Naselli-Flores, L. & R. Barone, 2011. Fight on plankton! Or, phytoplankton shape and size as adaptative tools to get ahead in the struggle for life. Cryptogamie, Algologie 32: 157–204.Google Scholar
  23. Naselli-Flores, L., J. Padisák & M. Albay, 2007. Shape and size in phytoplankton ecology: do they matter? Hydrobiologia 578: 157–161.CrossRefGoogle Scholar
  24. Olenina, I., S. Hajdu, I. Edler, A. Andersson, N. Wasmund, S. Busch, J. Göbel, S. Gromisz, S. Huseby, M. Huttunen, A. Jaanus, P. Kokkonen, I. Ledaine & E. Niemkiewicz, 2006. Biovolumes and size-classes of phytoplankton in the Baltic Sea. Baltic Sea Environment Proceedings 106: 1–144.Google Scholar
  25. Padisák, J. & R. Adrian, 1999. Biovolumen. In Tümpling, W. & G. Friedrich (eds), Methoden der Biologischen Wasseruntersuchung 2 Biologische Gewässeruntersuchung. Gustav Fischer Verlag, Jena: 334–367.Google Scholar
  26. Padisák, J., É. Soróczki-Pintér & Z. Rezner, 2003. Sinking properties of some phytoplankton shapes and the relation of form resistance to morphological diversity of plankton – an experimental study. Hydrobiologia 500: 243–257.CrossRefGoogle Scholar
  27. Popp, B. N., E. A. Laws, R. R. Bidigare, J. E. Dore, K. L. Hanson & S. G. Wakeham, 1998. Effect of phytoplankton cell geometry on carbon isotopic fractionation. Geochimica et Cosmochimica Acta 62: 69–77.CrossRefGoogle Scholar
  28. Reynolds, C. S., 1984a. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.Google Scholar
  29. Reynolds, C. S., 1984b. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwater Biology 14: 111–142.CrossRefGoogle Scholar
  30. Reynolds, C. S., 1988. Functional morphology and the adaptive strategies of freshwater phytoplankton. In Sandgren, C. D. (ed.), Growth and Reproductive Strategies of Freshwater Phytoplankton. Cambridge University Press, Cambridge: 388–433.Google Scholar
  31. Reynolds, C. S., 1997. Vegetation Process in the Pelagic: A Model for Ecosystem Theory, Vol. 9. Ecology Institute, Oldendorf/Luhe, Germany.Google Scholar
  32. Reynolds, C. S., 2006. The Ecology of Freshwater Phytoplankton. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
  33. Rivaro, P., C. Ianni, S. Massolo, N. Ruggieri & R. Frache, 2004. Spatial and seasonal variability of dissolved oxygen and nutrients in the Southern Adriatic coastal waters. Chemistry and Ecology 20: 279–307.CrossRefGoogle Scholar
  34. Sabetta, L., A. Basset & G. Spezie, 2008. Marine phytoplankton size–frequency distributions: spatial patterns and decoding mechanisms. Estuarine, Coastal and Shelf Science 80: 181–192.CrossRefGoogle Scholar
  35. Sabetta, L., A. Fiocca, L. Margheriti, F. Vignes, A. Basset, O. Mangoni, G. C. Carrada, N. Ruggieri & C. Ianni, 2005. Body size abundance distributions of nano- and micro-phytoplankton guilds in coastal marine ecosystems. Estuarine, Coastal and Shelf Science 63: 645–663.CrossRefGoogle Scholar
  36. Salmaso, N. & J. Padisák, 2007. Morpho-functional groups and phytoplankton development in two deep lakes (Lake Garda, Italy and Lake Stechlin, Germany). Hydrobiologia 578: 97–112.CrossRefGoogle Scholar
  37. Sigee, D. C., 2005. Inorganic nutrients: uptake and cycling in freshwater systems. In Sigee, D. C. (ed.), Freshwater Microbiology: Biodiversity and Dynamic Interactions of Microorganisms in the Aquatic Environment, Vol. 235–286. Wiley, England: 524.Google Scholar
  38. Simberloff, D. & T. Dayan, 1991. The guild concept and the structure of ecological communities. Annual Review of Ecology and Systematics 22: 115–143.CrossRefGoogle Scholar
  39. Smayda, T. J., 1970. The suspension and sinking of phytoplankton in the sea. Oceanography and Marine Biology: An Annual Review 8: 353–414.Google Scholar
  40. Smayda, T. J., 2002. Adaptive ecology, growth strategies and the global bloom expansion of dinoflagellates. Journal of Oceanography 58: 281–294.CrossRefGoogle Scholar
  41. Smith, R. E. H. & J. Kalff, 1982. Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. Journal of Phycology 18: 275–284.CrossRefGoogle Scholar
  42. Sommer, U., 1998. Silicate and the functional geometry of marine phytoplankton. Journal of Plankton Research 20: 1853–1859.CrossRefGoogle Scholar
  43. Sournia, A., 1981. The morphological bases of competition and succession. Canadian Bulletin of Fisheries and Aquatic Sciences 210: 339–346.Google Scholar
  44. Sournia, A., 1982. Form and function in marine phytoplankton. Biological Reviews 57: 347–394.CrossRefGoogle Scholar
  45. Sournia, A., 1986. Atlas du phytoplancton marin. Volume I: Introduction, Cyanophycées, Dictyochophycées, Dinophycées et Raphidophycées. CNRS, Paris.Google Scholar
  46. Sun, J. & D. Liu, 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. Journal of Plankton Research 25: 1331–1346.CrossRefGoogle Scholar
  47. Ter Braak, C. J. F., 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67: 1167–1179.CrossRefGoogle Scholar
  48. Thingstad, T. F., L. Øvrea, J. K. Egge, T. Løvdal & M. Heldal, 2005. Use of non-limiting substrates to increase size; a generic strategy to simultaneously optimize uptake and minimize predation in pelagic osmotrophs? Ecology Letters 8: 675–682.CrossRefGoogle Scholar
  49. Tomas, R. C., 1997. Identifying Marine Phytoplankton. Academic Press, St. Petersburg.Google Scholar
  50. Trono, A., 2005. Economia, ambiente e società del Salento costiero. Mario Congedo Editore, Galatina.Google Scholar
  51. Turkia, J. & L. Lepistö, 1999. Size variations of planktonic Aulacoseira Thwaites (Diatomae) in water and in sediment from Finnish lakes of varying trophic state. Journal of Plankton Research 21: 757–770.CrossRefGoogle Scholar
  52. Utermöhl, H., 1958. Zur Vervollkomnung der quantitativen Phytoplankton Methodik. Mitteilungen der Internationalen Vereinigung für Limnologie 9: 1–38.Google Scholar
  53. Vadrucci, M. R., M. Cabrini & A. Basset, 2007. Biovolume determination of phytoplankton guilds in transitional water ecosystems of Mediterranean Ecoregion. Transitional Waters Bulletin 2: 83–102.Google Scholar
  54. Van Donk, E., 1997. Defenses in phytoplankton against grazing induced by nutrient limitation, UV-B stress and infochemicals. Aquatic Ecology 31: 53–58.CrossRefGoogle Scholar
  55. Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel & E. Garnier, 2007. Let the concept of trait be functional! Oikos 116: 882–892.CrossRefGoogle Scholar
  56. Walsby, A. E. & C. S. Reynolds, 1980. Sinking and floating. In Morris, I. (ed.), The Physiological Ecology of Phytoplankton. Blackwell, Oxford: 371–412.Google Scholar
  57. Weithoff, G., 2003. The concepts of ‘plant functional types’ and ‘functional diversity’ in lake phytoplankton – a new understanding of phytoplankton ecology? Freshwater Biology 48: 1669–1675.CrossRefGoogle Scholar
  58. Zavatarelli, M., F. Raicich, D. Bregant, A. Russo & A. Artegiani, 1998. Climatological biogeochemical characteristics of the Adriatic Sea. Journal of Marine Systems 18: 227–263.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly

Personalised recommendations