, Volume 701, Issue 1, pp 13–23 | Cite as

Ecological correlates between cladocerans and their endoparasites from permanent and rain pools: patterns in community composition and diversity

  • Liron Goren
  • Frida Ben-Ami
Primary Research Paper


Water fleas (Cladocera) constitute a major component in freshwater food webs, with important ecosystem-level consequences. Their abundance and richness are strongly influenced by their ecology and coevolution with numerous endoparasites. We investigated how parasitism shapes cladoceran community structure and diversity. We surveyed 204 freshwater permanent and rain pools in Israel, identified all cladoceran specimens and screened them for infection. Daphniid species richness in this survey was lower than in previous surveys and the distribution pattern of the species was different, most likely due to local extinction and habitat loss. We recorded a total of 21 taxa of endoparasites, of which 13 are most likely species not yet described. Variation in parasite richness among hosts and sites could not be attributed to differences in host body size and behavioral feeding strategies. We extend the known host range and geographic distribution of eight parasites from Europe and North America (between latitudes 40° and 70°) to much southern areas (latitudes 31° and 32°) and to different climate zones (arid and semi-arid areas). In many infected populations we found co-occurrence of at least two endoparasites, and in most of these cases Daphnia individuals were found to be infected by several endoparasite species simultaneously. Such multiple infections may have important consequences for community structure as well as host–parasite coevolution.


Daphnia Host range Multiple infections Parasite specificity 



We thank D. Ebert and two anonymous reviewers for helpful comments on this manuscript. Specimens for this study were collected under permit 2011/38101 from the Israeli Authority for Nature Reserves and National Parks.


  1. Altındağ, A., S. Yiğit & M. B. Ergönöl, 2011. The zooplankton community of Lake Mogan, Turkey. Journal of Freshwater Ecology 22: 709–711.Google Scholar
  2. Ben-Ami, F., L. Mouton & D. Ebert, 2008. The effects of multiple infections on the expression and evolution of virulence in a Daphnia-endoparasite system. Evolution 62: 1700–1711.PubMedCrossRefGoogle Scholar
  3. Ben-Ami, F., T. Rigaud & D. Ebert, 2011. The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies. Journal of Evolutionary Biology 24: 1307–1316.PubMedCrossRefGoogle Scholar
  4. Bengtsson, J. & D. Ebert, 1998. Distributions and impacts of microparasites on Daphnia in a rockpool metapopulation. Oecologia 115: 213–221.CrossRefGoogle Scholar
  5. Benzie, J. A. H., 2005. The genus Daphnia (including Daphniopsis) (Anomopoda: Daphniidae). In Dumont, H. J. F. (ed.), Guides to the Identification of the Microinvertebrates of the Continental Waters of the World, Vol. 21. Kenobi Productions, Ghent & Backhuys Publishers, Leiden.Google Scholar
  6. Bromley, H. J., 1981. The Zooplankton of the Huleh Nature Reserve. Mimeographed Report to the Nature Reserves Authority, Jerusalem: 27 pp.Google Scholar
  7. Bromley, H. J., 1993. A checklist of the Cladocera of Israel and Eastern Sinai. Hydrobiologia 257: 21–28.CrossRefGoogle Scholar
  8. Brooks, T. M., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, A. B. Rylands, W. R. Konstant, P. Flick, J. Pilgrim, S. Oldfield, G. Magin & C. Hilton-Taylors, 2002. Habitat loss and extinction in the hotspots of biodiversity. Conservation Biology 16: 909–923.CrossRefGoogle Scholar
  9. Carius, H. J., T. J. Little & D. Ebert, 2001. Genetic variation in a host–parasite association: potential for coevolution and frequency-dependent selection. Evolution 55: 1136–1145.PubMedGoogle Scholar
  10. De Bie, T., S. Declerck, K. Martens, L. De Meester & L. Brendonck, 2008. A comparative analysis of cladoceran communities from different water body types: patterns in community composition and diversity. Hydrobiologia 597: 19–27.CrossRefGoogle Scholar
  11. Decaestecker, E., S. Declerck, L. De Meester & D. Ebert, 2005. Ecological implications of parasites in natural Daphnia populations. Oecologia 144: 382–390.PubMedCrossRefGoogle Scholar
  12. Duffy, M. A., S. R. Hall, A. J. Tessie & M. Huebner, 2005. Selective predators and their parasitized prey: are epidemics in zooplankton under top-down control? Limnology and Oceanography 50: 412–420.CrossRefGoogle Scholar
  13. Duffy, M. A., C. E. Càceres, S. R. Hall, A. J. Tessier & A. R. Ives, 2010. Temporal, spatial, and between-host comparisons of patterns of parasitism in lake zooplankton. Ecology 91: 3322–3331.PubMedCrossRefGoogle Scholar
  14. Ebert, D., 2005. Ecology, Epidemiology, and Evolution of Parasitism in Daphnia. National Library of Medicine (US), National Center for Biotechnology Information, Bethesda. Available from
  15. Ebert, D., C. D. Zschokke-Rohringer & H. J. Carius, 2000. Dose effects and density-dependent regulation of two microparasites of Daphnia magna. Oecologia 122: 200–209.CrossRefGoogle Scholar
  16. Ebert, D., J. W. Hottinger & V. I. Pajunen, 2001. Temporal and spatial dynamics of parasite richness in a Daphnia metapopulation. Ecology 82: 3417–3434.Google Scholar
  17. Forró, L., N. M. Korovchinsky, A. A. Kotov & A. Petrusek, 2008. Global diversity of cladocerans (Cladocera; Crustacea) in freshwater. Hydrobiologia 595: 177–184.CrossRefGoogle Scholar
  18. Forshay, K. J., P. T. J. Johnson, M. Stock, C. Penalva & S. I. Dodson, 2008. Festering food: parasitic chytridiomycete pathogen reduces quality of Daphnia hosts as a food resource. Ecology 89: 2692–2699.PubMedCrossRefGoogle Scholar
  19. Gophen, M., 1979. Extinction of Daphnia lumholtzi (Sars) in Lake Kinneret (Israel). Aquaculture 16: 67–71.CrossRefGoogle Scholar
  20. Goulden, C. E., 1968. The systematics and evolution of the Moinidae. Transactions of the American Philosophical Society, New Series 58: 1–101.CrossRefGoogle Scholar
  21. Green, J., 1957. Parasites and epibionts of Cladocera in rock pools of Tvärminne archipelago. Archivum Societatis Zoologicae Botanicae Fennicae Vanamo 12: 5–12.Google Scholar
  22. Green, J., 1974. Parasites and epibionts of Cladocera. The Transactions of the Zoological Society of London 32: 417–515.CrossRefGoogle Scholar
  23. Güher, H., 2000. A faunistic study on the freshwater Cladocera (Crustacea) species in Turkish Thrace (Edirne, Tekirdağ, Kirklareli). Turkish Journal of Zoology 24: 237–243.Google Scholar
  24. Haag, K. L., J. I. R. Larsson, D. Refardt & D. Ebert, 2011. Cytological and molecular description of Hamiltosporidium tvaerminnensis gen. et sp. nov., a microsporidian parasite of Daphnia magna, and establishment of Hamiltosporidium magnivora comb. nov. Parasitology 138: 447–462.PubMedCrossRefGoogle Scholar
  25. Hall, S. R., M. A. Duffy, A. J. Tessier & C. E. Càceres, 2005. Spatial heterogeneity of daphniid parasitism within lakes. Oecologia 143: 635–644.PubMedCrossRefGoogle Scholar
  26. Hosmer, D. W. & S. Lemeshow, 2000. Applied Logistic Regression. Wiley, New York.CrossRefGoogle Scholar
  27. Hudson, P. J., A. P. Dobson & D. Newborn, 1998. Prevention of population cycles by parasite removal. Science 282: 2256–2258.PubMedCrossRefGoogle Scholar
  28. Jenkins, D. G., S. Grissom & K. Miller, 2003. Consequences of prairie wetland drainage for crustacean biodiversity and metapopulations. Conservation Biology 17: 158–167.CrossRefGoogle Scholar
  29. Lampert, W., 1987. Vertical migration of freshwater zooplankton: indirect effects of vertebrate predators on algal communities. In Kerfoot, W. C. & A. Sih (eds), Predation, Direct and Indirect Impacts on Aquatic Communities. University Press of New England, Hanover: 291–299.Google Scholar
  30. Lampert, W. & U. Sommer, 1997. Limnoecology: The Ecology of Lakes and Streams. Oxford University Press, New York.Google Scholar
  31. Larsson, J. I. R., D. Ebert & J. Vávra, 1996. Ultrastructural study of Glugea cladocera Pfeiffer, 1895, and transfer to the genus Agglomerata (Microspora, Duboscqiidae). European Journal of Protistology 32: 412–422.CrossRefGoogle Scholar
  32. Larsson, J. I. R., D. Ebert & J. Vávra, 1997. Ultrastructural study and description of Ordospora colligata gen. et sp. nov. (Microspora, Ordosporidae fam. nov.), a new microsporidian parasite of Daphnia magna (Crustacea, Cladocera). European Journal of Protistology 33: 432–443.CrossRefGoogle Scholar
  33. Larsson, J. I. R., D. Ebert, K. L. Mangin & J. Vávra, 1998. Ultrastructural study and description of Flabelliforma magnivora sp n (Microspora : Duboscqiidae), a microsporidian parasite of Daphnia magna (Crustacea : Cladocera : Daphniidae). Acta Protozoologica 37: 41–52.Google Scholar
  34. Lehtinen, R. M., S. M. Galatowitsch & J. R. Tester, 1999. Consequences of habitat loss and fragmentation for wetland amphibian assemblages. Wetlands 19: 1–12.CrossRefGoogle Scholar
  35. Lello, J., B. Boag, A. Fenton, I. R. Stevenson & P. J. Hudson, 2004. Competition and mutualism among the gut helminthes of a mammalian host. Nature 428: 840–844.PubMedCrossRefGoogle Scholar
  36. Levin, N., E. Elron & A. Gasith, 2009. Decline of wetland ecosystems in the coastal plain of Israel during the 20th century: implications for wetland conservation and management. Landscape and Urban Planning 92: 220–232.CrossRefGoogle Scholar
  37. Luijckx, P., H. Fienberg, D. Duneau & D. Ebert, 2012. Resistance to a bacterial parasite in the crustacean Daphnia magna shows Mendelian segregation with dominance. Heredity 108: 547–551.PubMedCrossRefGoogle Scholar
  38. Mergeay, J., S. Declerck, D. Verschuren & L. De Meester, 2006. Daphnia community analysis in shallow Kenyan lakes and ponds using dormant eggs in surface sediments. Freshwater Biology 51: 399–411.CrossRefGoogle Scholar
  39. Petney, T. N. & R. H. Andrews, 1998. Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. International Journal of Parasitology 28: 377–393.PubMedCrossRefGoogle Scholar
  40. Rodrigues, J. L. M., M. A. Duffy, A. J. Tessier, D. Ebert, L. Mouton & T. M. Schmidt, 2008. Phylogenetic characterization and prevalence of “Spirobacillus cienkowskii”, a red-pigmented, spiral-shaped bacterial pathogen of freshwater Daphnia species. Applied and Environmental Microbiology 74: 1575–1582.PubMedCrossRefGoogle Scholar
  41. Rutrecht, S. T. & M. J. F. Brown, 2008. The life-history impact and implications of multiple parasites for bumble bee queens. International Journal of Parasitology 38: 799–808.PubMedCrossRefGoogle Scholar
  42. Scheffer, M., 1999. The effect of aquatic vegetation on turbidity: how important are the filter feeders? Hydrobiologia 409: 307–316.CrossRefGoogle Scholar
  43. Stirnadel, H. A. & D. Ebert, 1997. Prevalence, host specificity and impact on host fecundity of microparasites and epibionts in three sympatric Daphnia species. Journal of Animal Ecology 66: 212–222.CrossRefGoogle Scholar
  44. Tellenbach, C., J. Wolinska & P. Spaak, 2007. Epidemiology of a Daphnia brood parasite and its implications on host life-history traits. Oecologia 154: 369–375.PubMedCrossRefGoogle Scholar
  45. Vidtmann, S., 1993. The peculiarities of prevalence of microsporidium Larssonia daphniae in the natural Daphnia pulex population. Ekologija 1: 61–69.Google Scholar
  46. Wolinska, J., S. Giessler & H. Koerner, 2009. Molecular identification and hidden diversity of novel Daphnia parasites from European lakes. Applied and Environmental Microbiology 75: 7051–7059.PubMedCrossRefGoogle Scholar
  47. Wolinska, J., J. Seda, H. Koerner, P. Smilauer & A. Petrusek, 2011. Spatial variation of Daphnia parasite load within individual water bodies. Journal of Plankton Research 33: 1284–1294.CrossRefGoogle Scholar
  48. Yaron, Z., 1964. Notes on the ecology and entomostracan fauna of temporary rainpools in Israel. Hydrobiologia 24: 489–513.CrossRefGoogle Scholar
  49. Yin, M., A. Petrusek, J. Seda & J. Wolinska, 2012. Fine-scale genetic analysis of Daphnia host populations infected by two virulent parasites—strong fluctuations in clonal structure at small temporal and spatial scales. International Journal for Parasitology 42: 115–121.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Department of Zoology, George S. Wise Faculty of Life SciencesTel Aviv UniversityTel AvivIsrael

Personalised recommendations