Skip to main content
Log in

Effects of macrophyte-associated nitrogen cycling bacteria on denitrification in the sediments of the eutrophic Gonghu Bay, Taihu Lake

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Integrated Elodea nuttallii-immobilized nitrogen cycling bacteria (INCB) technology was used for ecological restoration in the eutrophic Gonghu Bay, Taihu Lake. Sediment denitrification was investigated through microcosm incubations with four different treatments: bare sediment core as control without restoration, sediment + E. nuttallii, sediment + E. nuttallii + INCB, and sediment + INCB. The sediments with E. nuttallii-INCB assemblage (E-INCB) had the highest denitrification rates among all the treatments, and the E-INCB increased the denitrification rate by 162% in the sediments. The presence of macrophytes yielded a penetration depth of O2 to more than 20 mm below the sediment–water interface (SWI), while the depth was only 4 mm in the sediments without macrophytes. The quantity of denitrifier in E-INCB sediments (within ~2 cm below the SWI) showed a significant increasing trend during one-month incubation, which was one order of magnitudes higher than that in the sediments without INCB. Macrophytes caused deeper O2 penetration and increased oxic-anoxic interface, which could stimulate the coupled nitrification–denitrification. The high denitrification rate of the E-INCB treatment may result from the increased inorganic nitrogen content in the vicinity of the SWI, causing more nitrate to reach the anoxic denitrification zone. The results showed that E-INCB assemblage could increase benthic N removal by stimulating denitrification via combined O2 penetration and enhanced microbial N cycling processes. E-INCB might be used as a potential restoration method for controlling fresh water system eutrophication.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • ABMH, 1993. State EPA aquatic biological monitoring handbook editorial board. Aquatic biological monitoring handbook. Southeast University Press, Nanjing: 126–128.

  • AMWW, 2002. State EPA analytical methods for water and wastewater editorial board. The analytical methods for water and wastewater, 4th edn. Publishing Bureau of Environmental Sciences of China Press, Beijing: 41–64.

  • An, S. & S. B. Joye, 2001. Enhancement of coupled-denitrification by benthic photosynthesis in shallow estuarine sediments. Limnology and Oceanography 46: 62–74.

    Article  CAS  Google Scholar 

  • An, S., W. S. Gardner & T. Kana, 2001. Simultaneous measurement of denitrification and nitrogen fixation using isotope pairing with membrane inlet mass spectrometry analysis. Applied and Environmental Microbiology 67: 1171–1178.

    Article  PubMed  CAS  Google Scholar 

  • Baeseman, J. L., R. L. Smith & J. Silverstein, 2006. Denitrification potential in stream sediments impacted by acid mine drainage: effects of pH, various electron donors, and iron. Microbial Ecology 51: 232–241.

    Article  PubMed  CAS  Google Scholar 

  • Bange, H. W., 2000. Global change: it’s not a gas. Nature 16: 301–302.

    Article  Google Scholar 

  • Burford, J. & J. Bremner, 1975. Relationships between the denitrification capacities of soil and total, water-soluble and readily decomposable soil organic matter. Soil Biology and Oceanography 35: 640–651.

    Google Scholar 

  • Burkhart, M. R. & D. E. James, 1999. Agricultural-nitrogen contributions to hypoxia in the Gulf of Mexico. Journal of Environmental Quality 28: 850–859.

    Article  Google Scholar 

  • Caffrey, J. M. & W. M. Kemp, 1992. Influence of the submersed plant, Potamogeton perfoliatus, on nitrogen cycling in estuarine sediments. Limnology and Oceanography 37: 1483–1495.

    Article  CAS  Google Scholar 

  • Cao, G. M., Q. X. Zhao, X. B. Sun & T. Zhang, 2002. Characterization of nitrifying and denitrifying bacteria coimmobilized in PVA and kinetics model of biological nitrogen removal by coimmobilized cells. Enzyme and Microbial Technology 30: 49–55.

    Article  CAS  Google Scholar 

  • Chen, K. N., C. H. Bao & W. P. Zhou, 2009. Ecological restoration in eutrophic Lake Wuli: a large enclosure experiment. Ecological Engineering 35: 1646–1655.

    Article  Google Scholar 

  • Christensen, P. B., N. P. Revsbech & K. Sand-Jensen, 1994. Microsensor analysis of oxygen in the rhizosphere of the aquatic macrophyte Littorella unifloru (L.) Ascherson. Plant Physiology 105: 847–852.

    PubMed  CAS  Google Scholar 

  • Dewedar, A., M. Bahgat & E. E. Shabana, 2009. Seasonal distribution and activity of nitrogen-cycling bacteria in Bardawil Lagoon, Egypt. African Journal of Aquatic Science 34: 183–188.

    Article  CAS  Google Scholar 

  • El-Hag, Ali A., H. A. Shawky, H. A. Abd El Rehim & E. A. Hegazy, 2003. Synthesis and characterization of PVP/AAc copolymer hydrogel and its applications in the removal of heavy metals from aqueous solution. European Polymer Journal 39: 2337–2344.

    Article  Google Scholar 

  • Eriksson, P. G. & S. E. B. Weisner, 1997. Nitrogen removal in a wastewater reservoir: the importance of denitrification by epiphytic biofilms on submersed vegetation. Journal of Environmental Quality 26: 905–910.

    Article  CAS  Google Scholar 

  • Eriksson, P. G. & S. E. B. Weisner, 1999. An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems. Limnology and Oceanography 44: 1993–1999.

    Article  CAS  Google Scholar 

  • Fan, C. X., J. Ji, W. H. Zhang, Q. B. Wu, K. N. Chen & Y. W. Chen, 1997. Comprehensive evaluation and preliminary prediction for water quality and eutrophication of Gonghu Bay. Transactions of Oceanology and Limnology 3: 18–24.

    Google Scholar 

  • Galloway, J. N., A. R. Townsend, J. W. Erisman, M. Bekunda, Z. C. Cai, J. R. Freney, L. A. Martinelli, S. P. Seitzinger & M. A. Sutton, 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320: 889–892.

    Article  PubMed  CAS  Google Scholar 

  • Gao, Y. X., G. W. Zhu, B. Q. Qin, Y. Pang, Z. J. Gong & Y. L. Zhang, 2009. Effect of ecological engineering on the nutrient content of surface sediments in Lake Taihu, China. Ecological Engineering 35: 1624–1630.

    Article  Google Scholar 

  • Giles, J., 2005. Nitrogen study fertilizes fears of pollution. Nature 433: 791.

    Article  PubMed  CAS  Google Scholar 

  • Graca, B., D. Burska & K. Matuszewska, 2004. The impact of dredging deep pits on organic matter decomposition in sediments. Water, Air and Soil Pollution 158: 237–259.

    Article  CAS  Google Scholar 

  • Henriksen, K., J. I. Hansen & T. H. Blackburn, 1981. Rates of nitrification, distribution of nitrifying bacteria, and nitrate fluxes in different types of sediment from Danish waters. Marine Biology 61: 299–304.

    Article  CAS  Google Scholar 

  • James, R. T. & C. D. Pollman, 2011. Sediment and nutrient management solutions to improve the water quality of Lake Okeechobee. Lake and Reservoir Management 27: 28–40.

    Article  CAS  Google Scholar 

  • Jespersen, D. N., B. K. Sorrell & H. Brix, 1998. Growth and root oxygen release by Typha latifolia and its effects on sediment methanogenesis. Aquatic Botany 61: 168–180.

    Article  Google Scholar 

  • Kana, T. M., C. Darkangelo, M. D. Hunt, J. B. Oldham, E. Bennett & J. C. Cornwell, 1994. Membrane inlet mass-spectrometer for rapid high-precision determination of N2, O2, and Ar in environmental water samples. Analytical Chemistry 66: 4166–4170.

    Article  CAS  Google Scholar 

  • Korom, S., 1992. Natural denitrification in the saturated zone: a review. Water Resources Research 28: 1657–1668.

    Article  CAS  Google Scholar 

  • Kyle, S. & R. Jeffrey, 2008. Denitrification in intact sediment cores from a constructed wetland: examining the isotope pairing technique. Applied Geochemistry 23: 2105–2112.

    Article  Google Scholar 

  • Lauridsen, T. L., J. P. Jensen, E. Jeppesen & M. Søndergaard, 2003. Response of submerged macrophytes in Danish lakes to nutrient loading reductions and biomanipulation. Hydrobiologia 506: 641–649.

    Article  Google Scholar 

  • Li, Z. K., P. M. Pu, W. P. Hu, C. H. Hu, B. J. Chen, B. Li, X. Y. Cheng, S. Z. Zhang, Y. Q. Fan, W. D. Zhang & J. T. Zhu, 2002. Improvement of Taihu water quality by the technology of immobilized nitrogen cycle bacteria. Nuclear Science and Techniques 13: 115–118.

    CAS  Google Scholar 

  • Liu, Y. Q., P. Xie, D. W. Zhang & Z. R. Wen, 2008. Seasonal dynamics of microcystins with associated biotic and abiotic parameters in two bays of Lake Taihu, the third largest freshwater lake in China. Bulletin of Environmental Contamination and Toxicology 80: 24–29.

    Article  PubMed  CAS  Google Scholar 

  • Martin, K., L. L. Parsons, R. E. Murray & M. S. Smith, 1988. Dynamics of soil denitrifier populations: relationships between enzyme activity, most probable number counts and actual N gas loss. Applied Environmental Microbiology 54: 2711–2716.

    CAS  Google Scholar 

  • Morris, K., P. C. Bailey, P. I. Boon & L. Hughes, 2003. Alternative stable states in the aquatic vegetation of shallow urban lakes. II. Catastrophic loss of aquatic plants consequent to nutrient enrichment. Marine and Freshwater Research 54: 201–215.

    Article  CAS  Google Scholar 

  • Nielsen, L. P., 1992. Denitrification in sediment determined from nitrogen isotope pairing. FEMS Microbiology Ecology 86: 181–186.

    Google Scholar 

  • Nowiki, B., 1994. The effect of temperature, oxygen, salinity, and nutrient enrichment on estuarine denitrification rates measured with a modified nitrogen gas flux technique. Estuarine, Coastal and Shelf Science 38: 137–156.

    Article  Google Scholar 

  • Ottosen, L. D. M., N. Risgaard-Petersen & L. P. Nielsen, 1999. Direct and indirect measurements of nitrification and denitrification in the rhizosphere of aquatic macrophytes. Aquatic Microbial Ecology 19: 81–91.

    Article  Google Scholar 

  • Pattinson, S., R. Garía-Ruiz & B. A. Whitton, 1998. Spatial and seasonal variation in denitrification in the Swale-Ouse system, a river continuum. Science of the Total Environment 210(211): 289–305.

    Article  Google Scholar 

  • Pinardi, M., M. Bartoli, D. Longhi, U. Marzocchi, A. Laini, C. Ribaudo & P. Viaroli, 2009. Benthic metabolism and denitrification in a river reach: a comparison between vegetated and bare sediments. Journal of Limnology 68: 133–145.

    Article  Google Scholar 

  • Qin, B. Q., G. W. Zhu, G. Gao, Y. L. Zhang, W. Li, H. W. Paerl & W. W. Carmichael, 2010. A drinking water crisis in Lake Taihu, China: linkage to climatic variability and lake management. Environmental Management 45: 105–112.

    Article  PubMed  Google Scholar 

  • Reddy, K. R., W. H. Patrick Jr & C. V. Lindau, 1989. Nitrification-denitrification at the plant root-sediment interface in wetlands. Limnology and Oceanography 34: 1004–1013.

    Article  CAS  Google Scholar 

  • Risgaard-Petersen, N., 2004. Denitrification. In Nielsen, S. L., G. T. Banta & M. F. Pedersen (eds), Estuarine Nutrient Cycling: The Influence of Primary Producers. Acquatic Ecology Series. Kluwer, Dordrecht: 263–280.

    Chapter  Google Scholar 

  • Risgaard-Petersen, N. & K. Jensen, 1997. Nitrification and denitrification in the rhizosphere of the aquatic macrophyte Lobelia dortmanna L. Limnology and Oceanography 42: 529–537.

    Article  CAS  Google Scholar 

  • Risgaard-Petersen, N., S. Rysgaard, L. P. Nielsen & N. P. Rersbech, 1994. Diurnal variation of denitrification and nitrification in sediments colonized by benthic microphytes. Limnology and Oceanography 39: 573–579.

    Article  CAS  Google Scholar 

  • Sakairi, M. A. C., K. Yasuda & M. Matsumura, 1996. Nitrogen removal in seawater using nitrifying and denitrifying bacteria immobilized in porous cellulose carrier. Water Science and Technology 34: 267–274.

    CAS  Google Scholar 

  • Satoshi, T., A. Vasanthadevi & F. Kenji, 1996. Nitrogen removal from domestic wastewater using immobilized bacteria. Water Science and Technology 34: 431–440.

    Article  Google Scholar 

  • Seitzinger, S. P., 1988. Denitrification in freshwater and coastal marine ecosystems: ecological and geochemical significance. Limnology and Oceanography 33: 702–724.

    Article  CAS  Google Scholar 

  • Sjodin, A. L., W. M. Lewis & J. F. Saunders, 1997. Denitrification as a component of the nitrogen budget for a large plains river. Biogeochemistry 39: 327–342.

    Article  CAS  Google Scholar 

  • Soil Microbiology Research Association (SMEM), 1983. Soil Microbiology Experimental Methods. Science Press, Beijing: 656.

    Google Scholar 

  • Søndergaard, M., 2007. Nutrient dynamics in lakes-with emphasis on phosphorus, sediment and lake restoration. Doctor’s dissertation (DSc), University of Aarhus, Denmark.

  • Tiedje, M., S. Simkins & P. M. Groffman, 1989. Perspectives on measurement of denitrification in the field including recommended protocols for acetylene-based methods. Plant Soil 115: 261–284.

    Article  Google Scholar 

  • Tramper, J. & D. R. J. Grootjen, 1986. Operating performance of nitrobacter agills immobilized in carrageenan. Enzyme and Microbial Technology 8: 447.

    Google Scholar 

  • Van Nes, E. H., W. J. Rip & M. Scheffer, 2007. A theory for cyclic shifts between alternative states in shallow lakes. Ecosystems 10: 17–27.

    Article  Google Scholar 

  • Welsh, D. T., M. Bartoli, D. Nizzoli, G. Castaldelli, S. A. Riou & P. Viaroli, 2000. Denitrification, nitrogen fixation, community primary productivity and inorganic-N and oxygen fluxes in an intertidal Zostera noltii meadow. Marine Ecology Progress Series 208: 65–77.

    Article  Google Scholar 

  • Zhang, X. J., C. Chen, J. Q. Ding, A. X. Hou, Y. Li, Z. B. Niu, X. Y. Su, Y. J. Xu & E. A. Laws, 2010. The 2007 water crisis in Wuxi, China: analysis of the origin. Journal of Hazardous Materials 182: 130–135.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by Natural Science Foundation of Jiangsu Province (No. BK2010056), Projects of Jiangsu Provincial Department Environmental Protection Office (No. 201108), the Major State Water Pollution Control and Treatment Technique Program of China (No. 2008ZX07101-012) and the National Natural Science Foundation (No. 40903031). We sincerely thank Dr. Zhang Lu for providing valuable advices on isotope samples test. We thank Dr. Wang Jianjun for his technical assistance in using O2 microoptode equipment, and Mr. Xiong Wen and Mr. Chen Qichun for providing field and lab support. We also thank the helpful comments of the two anonymous reviewers and Dr. Zhang Xuxiang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengkui Li.

Additional information

Handling editor: P. Nõges

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Y., Li, Z., Zhou, L. et al. Effects of macrophyte-associated nitrogen cycling bacteria on denitrification in the sediments of the eutrophic Gonghu Bay, Taihu Lake. Hydrobiologia 700, 329–341 (2013). https://doi.org/10.1007/s10750-012-1241-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1241-7

Keywords

Navigation