, Volume 700, Issue 1, pp 313–327 | Cite as

Fairy shrimps in distress: a molecular taxonomic review of the diverse fairy shrimp genus Branchinella (Anostraca: Thamnocephalidae) in Australia in the light of ongoing environmental change

  • Tom PinceelEmail author
  • Bram Vanschoenwinkel
  • Aline Waterkeyn
  • Maarten P. M. Vanhove
  • Adrian Pinder
  • Brian V. Timms
  • Luc Brendonck
Primary Research Paper


Australia, and especially South-Western Australia, is a diversity hotspot for large branchiopod crustaceans. A significant proportion of this diversity is found in the anostracans (Crustacea, Anostraca) and particularly in the diverse genus Branchinella with at least 34 species. Members of this genus are found exclusively in temporary aquatic habitats which are increasingly threatened by secondary salinization and other anthropogenic pressures. The development of adequate conservation strategies is therefore considered a priority. To define conservation units, however, thorough knowledge of the taxonomy and phylogenetic position of extant lineages is essential. We reconstructed a large scale phylogeny of the Australian Branchinella by analyzing the 16S mitochondrial gene of 31 presumed species, complemented with analysis of morphological structures holding taxonomic information. Results revealed the presence of at least three new cryptic species. On the other hand, some Branchinella lineages, surviving in environments subjected to contrasting selection regimes, appeared to be conspecific. This suggests substantial physiological plasticity or important adaptive variation present in some species, potentially enabling them to better cope with environmental change, such as secondary salinization. Overall, these results further illustrate the benefits of combining molecular markers and classic morphological taxonomy and phylogeny to assess biodiversity and define conservation units in cryptic groups.


Branchinella Molecular taxonomy Secondary salinization Conservation Australia 



This research was funded by the Research Foundation Flanders (FWO–Vlaanderen): project G.0627.09N (Interactions between ecological and evolutionary precesses in rock pool metacommunities along a climate gradient). B.V. and M.P.M.V. currently hold, respectively, a doctoral and postdoctoral fellowship with the Research Foundation Flanders. The authors would also like to thank Bart Hellemans, Carla Denis and Maarten H. D. Larmuseau for their valuable insights during preparation of the manuscript and technical assistance. We thank the Department of Environment and Conservation of Western Australia for issuing permits.

Supplementary material

10750_2012_1240_MOESM1_ESM.docx (37 kb)
Supplementary material 1 (DOCX 36 kb)


  1. Adamowicz, S. J., P. D. N. Hebert & M. C. Marinone, 2004. Species diversity and endemism in the Daphnia of Argentina: a genetic investigation. Zoological Journal of the Linnean Society 140: 171–205.CrossRefGoogle Scholar
  2. Adamowicz, S. J. & A. Purvis, 2005. How many branchiopod crustacean species are there? Quantifying the components of underestimation. Global Ecology and Biogeography 14: 455–468.CrossRefGoogle Scholar
  3. Adamowicz, S. J., J. K. Colbourne, J. D. S. Witt & P. D. N. Hebert, 2009. The scale of divergence: a phylogenetic appraisal of intercontinental allopatric speciation in a passively dispersed zooplankton genus. Molecular Phylogenetics and Evolution 50: 423–436.PubMedCrossRefGoogle Scholar
  4. Belk, D., 1998. Hotspots of inland water crustacean biodiversity. Newsletter of the Species Survival Commission 30: 50.Google Scholar
  5. Belk, D. & J. Brtek, 1995. Checklist of the Anostraca. Hydrobiologia 298: 315–353.CrossRefGoogle Scholar
  6. Brendonck, L., 1997. The anostracan genus Branchinella (Crustacea: Branchiopoda), in need of a taxonomic revision; evidence from penile morphology. Zoological Journal of the Linnean Society 119: 447–455.CrossRefGoogle Scholar
  7. Brendonck, L. & D. Belk, 1997. On potentials and relevance of the use of copulatory structures in anostracan taxonomy. Hydrobiologia 359: 83–92.CrossRefGoogle Scholar
  8. Brendonck, L., D. C. Rogers, J. Olesen, S. Weeks & W. R. Hoeh, 2008. Global diversity of large branchiopods (Crustacea: Branchiopoda) in freshwater. Hydrobiologia 595: 167–176.CrossRefGoogle Scholar
  9. Byrne, M., D. K. Yeates, L. Joseph, M. Kearney, J. Bowler, M. A. J. Williams, S. Cooper, S. C. Donnellan, J. S. Keogh, R. Leys, J. Melville, D. J. Murphy, N. Porch & K. H. Wyrwoll, 2008. Birth of a biome: insights into the assembly and maintenance of the Australian arid zone biota. Molecular Ecology 17: 4398–4417.PubMedCrossRefGoogle Scholar
  10. Calendini, F. & J. F. Martin, 2005. PaupUP v1.0.3.1: a free graphical frontend for Paup*. Dos software.Google Scholar
  11. Capella-Gutierrez, S., J. M. Silla-Martinez & T. Gabaldon, 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972–1973.PubMedCrossRefGoogle Scholar
  12. Chapman, A. & B. V. Timms, 2004. Waterbird usage of Lake Arrow, an arid zone wetland in the eastern Goldfields of Western Australia, following cyclonic rain. Australian Field Orthnithology 21: 107–114.Google Scholar
  13. Clarke, C. J., R. J. George, R. W. Bell & T. J. Hatton, 2002. Dryland salinity in south-western Australia: its origins, remedies, and future research directions. Australian Journal of Soil Research 40: 93–113.CrossRefGoogle Scholar
  14. Crandall, K. A., O. R. P. Bininda-Emonds, G. M. Mace & R. K. Wayne, 2000. Considering evolutionary processes in conservation biology. Trends in Ecology & Evolution 15: 290–295.CrossRefGoogle Scholar
  15. Fraser, D. J. & L. Bernatchez, 2001. Adaptive evolutionary conservation: towards a unified concept for defining conservation units. Molecular Ecology 10: 2741–2752.PubMedGoogle Scholar
  16. Geddes, M. C., 1980. Biogeography and Ecology of Australian Anosctraca (Crustacea: Branchiopoda). Papers from the conference on the biology and evolution of Crustacea. Australian Museum Memoir 18: 154–163.Google Scholar
  17. Geddes, M. C., 1981. Revision of Australian species of Brachninella (Crustacea, Anostraca). Australian Journal of Marine and Freshwater Research 32: 253–295.CrossRefGoogle Scholar
  18. Guindon, S., F. Lethiec, P. Duroux & O. Gascuel, 2005. PHYML Online—a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Research 33: W557–W559.PubMedCrossRefGoogle Scholar
  19. Hall, T. A., 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium 41: 95–98.Google Scholar
  20. Halse, S. A., 2002. Diversity of Ostracoda (Crustacea) in inland waters of Western Australia. In Wetzel, R. G. (ed.), International Association of Theoretical and Applied Limnology, Vol 28, Pt 2, Proceedings. International Association of Theoretical and Applied Limnology Proceedings, Vol 28. E Schweizerbart’sche Verlagsbuchhandlung, Stuttgart.Google Scholar
  21. Halse, S. A., R. J. Shiel, A. W. Storey, D. H. D. Edward, I. Lansbury, D. J. Cale & M. S. Harvey, 2000. Aquatic invertebrates and waterbirds of wetlands and rivers of the southern Carnarvon Basin, Western Australia. Records of the Western Australian Museum Supplement 61: 217–265.Google Scholar
  22. Halse, S. A. & J. M. McRae, 2004. New genera and species of ‘giant’ ostracods (Crustacea: Cyprididae) from Australia. Hydrobiologia 524: 1–52.CrossRefGoogle Scholar
  23. Hammer, U. T., 1986. Saline lake ecosystems of the world. Dr. W Junk Publishers, Dordrecht.Google Scholar
  24. Hamer, M., 1999. Anostraca. In Day, J. A., B. A. Stewart, I. J. de Moor, & A. E. Louw (eds), Freshwater Invertebrates of Southern Africa Crustacea I: Notostraca, Anostraca, Conchostraca and Cladocera. Water Research Commission Report TT 121/00, Pretoria: 14–58.Google Scholar
  25. Hebert, P. D. N., E. A. Remigio, J. K. Colbourne, D. J. Taylor & C. C. Wilson, 2002. Accelerated molecular evolution in halophilic crustaceans. Evolution 56: 909–926.PubMedGoogle Scholar
  26. Hebert, P. D. N., S. Ratnasingham & J. R. deWaard, 2003. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proceedings of the Royal Society of London series B 270: S96–S99.PubMedCrossRefGoogle Scholar
  27. Huelsenbeck, J. P., F. Ronquist, R. Nielsen & J. P. Bollback, 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294: 2310–2314.PubMedCrossRefGoogle Scholar
  28. IUCN, 2001. IUCN Red List categories and criteria: Version 3.1. IUCN Species Survival Commission. IUCN, Gland, Switzerland and Cambridge, UK.Google Scholar
  29. IUCN, 2003. Guidelines for application of IUCN Red List criteria at regional levels: version 3.0. IUCN species survival commission. IUCN, Gland, Switzerland and Cambridge, UK.Google Scholar
  30. IUCN Standards and Petitions Working Group, 2008. Guidelines for using the IUCN Red List categories and criteria. Version 7.0. Standards and Petitions Working Group of the IUCN SSC Biodiversity Assessments Sub-Committee.Google Scholar
  31. Jardine, A., M. Corkeron & P. Weinstein, 2011. Dryland salinity and vector-borne disease emergence in southwestern Australia. Environmental Geochemistry and Health 33: 363–370.PubMedCrossRefGoogle Scholar
  32. Jocque, M., B. Vanschoenwinkel & L. Brendonck, 2010. Anostracan monopolisation of early successional phases in temporary waters? Fundamental and Applied Limnology 176: 127–132.CrossRefGoogle Scholar
  33. Kimura, M., 1980. A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16: 111–120.PubMedCrossRefGoogle Scholar
  34. Linder F., 1941. Contributions to the morphology and the taxonomy of the Branchiopoda Anostraca. Zoolgiska Bidrag Fran Uppsala.Google Scholar
  35. Mayden, R. L. & R. M. Wood, 1995. Systematics, species concepts, and the evolutionarily significant unit in biodiversity and conservation biology. Symposium 17, American Fisheries Society, Maryland.Google Scholar
  36. McFarlane, D. J., R. J. George & P. A. Cacetta, 2004. The extent and potential area of salt affected land in Western Australia estimated using remote sensing and digital terrain models. In 1st National Salinity Engineering Conference, Perth.Google Scholar
  37. Moritz, C., 2002. Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology 51: 238–254.PubMedCrossRefGoogle Scholar
  38. Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca & J. Kent, 2000. Biodiversity hotspots for conservation priorities. Nature 403: 853–858.PubMedCrossRefGoogle Scholar
  39. Palumbi, S. R., 1996. Nucleic acids II: the polymerase chain reaction. Sinauer Associates, Massachusetts.Google Scholar
  40. Pinder, A. M., S. A. Halse, R. J. Shiel & J. M. McRae, 2000. Granite outcrop pools in south-western Australia: foci of diversification and refugia for aquatic invertebrates. Journal of the Royal Society of Western Australia 83: 117–129.Google Scholar
  41. Pinder, A. M., S. A. Halse, J. M. McRae & R. J. Shiel, 2004. Aquatic invertebrate assemblages of wetlands and rivers in the wheatbelt region of Western Australia. Records of the Western Australian Museum 67: 7–37.Google Scholar
  42. Pinder, A. M., S. A. Halse, R. J. Shiel & J. M. McRae, 2010. An arid zone awash with diversity: patterns in the distribution of aquatic invertebrates in the Pilbara region of Western Australia. Records of the Western Australian Museum 78: 205–246.Google Scholar
  43. Posada, D., 2008. jModelTest: phylogenetic model averaging. Molecular Biology and Evolution 25: 1253–1256.PubMedCrossRefGoogle Scholar
  44. Remigio, E. A., P. D. N. Hebert & A. Savage, 2001. Phylogenetic relationships and remarkable radiation in Parartemia (Crustacea: Anostraca), the endemic brine shrimp of Australia: evidence from mitochondrial DNA sequences. Biological Journal of the Linnean Society 74: 597–599.Google Scholar
  45. Remigio, E. A., B. V. Timms & P. D. N. Hebert, 2003. Phylogenetic systematics of the Australian fairy shrimp genus Branchinella based on mitochondrial DNA sequences. Journal of Crustacean Biology 23: 436–442.CrossRefGoogle Scholar
  46. Rogers, D. C., 2006. A genus level revision of the Thamnocephalidae (Crustacea: Branchiopoda: Anostraca). Zootaxa 1260: 1–25.Google Scholar
  47. Ronquist, F. & J. P. Huelsenbeck, 2003. MRBAYES 3: bayesian phylogenetic inference under mixed models. Bioinformatics 19: 1572–1574.PubMedCrossRefGoogle Scholar
  48. Rozen, S. & H. Skaletsky, 2008. Primer3 on the WWW for general users and for biologist programmers. Bioinformatics Methods and Protocols 132: 1064–3745.Google Scholar
  49. Ryder, O. A., 1986. Species conservation and systematics—the dilemma of subspecies. Trends in Ecology & Evolution 1: 9–10.CrossRefGoogle Scholar
  50. Sayce, O. A., 1903. The Phyllopoda of Australia, including descriptions of some new genera and species. Proceedings of the Royal Society of Victoria 15: 224–261.Google Scholar
  51. Schluter, D., 2000. The ecology of adaptive radiation. Oxford University Press, Oxford.Google Scholar
  52. Schmidt, H. A., K. Strimmer, M. Vingron & A. von Haeseler, 2002. TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics 18: 502–504.PubMedCrossRefGoogle Scholar
  53. Seger, H. & R. J. Shiel, 2003. Microfaunal diversity in a biodiversity hotspot: new rotifers from Southwestern Australia. Zoological Studies 42: 516–521.Google Scholar
  54. Short, R. & C. McConnell, 2001. Extent and impacts of dryland salinity. Resource Management Technical Report 202. Agriculture Western Australia, Perth.Google Scholar
  55. Strimmer, K. & A. von Haeseler, 1996. Quartet puzzling: a quartet maximum likelihood method for reconstructing tree topologies. Molecular Biology and Evolution 13: 964–969.CrossRefGoogle Scholar
  56. Swofford, D. L., 2000. PAUP*. Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Massachusetts.Google Scholar
  57. Tamura, K., J. Dudley, M. Nei & S. Kumar, 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution 24: 1596–1599.PubMedCrossRefGoogle Scholar
  58. Timms, B. V., 2001. Two new species of fairy shrimp (Crustacea: Anostraca: Thamnocephalidae: Branchinella) from the Paroo, Inland Australia. Records of the Australian Museum 53: 247–254.CrossRefGoogle Scholar
  59. Timms, B. V., 2002. The fairy shrimp genus Branchinella Sayce (Crustacea: Anostraca: Thamnocephalidae) in Western Australia, including a description of four new species. Hydrobiologia 486: 71–89.CrossRefGoogle Scholar
  60. Timms, B. V., 2004. An identification guide to the fairy shrimps (Crustacea: Anostraca) of Australia. CRCFC Identification and Ecology guide No 47, Thurgoona, NSW, Australia.Google Scholar
  61. Timms, B. V., 2005. Two new species of Branchinella (Anostraca: Thamnocephalidae) and a reappraisal of the B-nichollsi group. Memoirs of the Queensland Museum 50: 441–452.Google Scholar
  62. Timms, B. V., 2008. Further studies on the fairy shrimp genus Branchinella (Crustacea, Anostraca, Thamnocephalidae) in Western Australia, with descriptions of new species. Records of the Western Australian Museum 24: 289–306.Google Scholar
  63. Timms, B. V., 2009. Biodiversity of large branchiopods of Australian saline lakes. Current Science 96: 74–80.Google Scholar
  64. Timms, B. V., 2012. An appraisal of the diversity and distribution of large branchiopods (Branchiopoda: Anostraca, Laevicaudata, Spinicaudata, Cyclestherida, Notostraca) in Australia. Journal of Crustacean Biology 32(4):615–623.Google Scholar
  65. Timms, B. V. & P. R. Sanders, 2002. Biogeography and ecology of Anostraca (Crustacea) in middle Paroo catchment of the Australian arid-zone. Hydrobiologia 486: 225–238.CrossRefGoogle Scholar
  66. Timms, B. V. & M. C. Geddes, 2003. The Fairy Shrimp genus Branchinella Sayce, 1903 (Crustacea: Anostraca: Thamnocephalidae) in South Australia and the Northern Territory, including descriptions of three new species. Transactions of the Royal Society of South Australia 127: 53–68.Google Scholar
  67. Timms, B. V. & S. Lindsay, 2011. Morphometrics of the resting eggs of the Australian species of the fairy shrimp Branchinella (Anostraca: Thamnocephalidae). Proceedings of the Linnean Society of New South Wales 133: 51–68.Google Scholar
  68. Wallace, K. J., K. Connell, R. Vogwill, M. Edgely, R. Hearn, R. Huston, P. Lacey, T. Massenbauer, G. Mullan, & N. Nicholson, 2011. Natural Diversity Recovery Catchment Program: 2010 Review. Department of Environment and Conservation, Perth.Google Scholar
  69. Xia, X. & P. Lemey, 2009. Assessing substitution saturation with DAMBE. In Lemey, P., M. Salemi & A. Vandamme (eds), The phylogenetic handbook: a practical approach to DNA and protein phylogeny. Cambridge University Press, Cambridge.Google Scholar
  70. Xia, X., Z. Xie, M. Salemi, L. Chen & Y. Wang, 2003. An index of substitution saturation and its application. Molecular Phylogenetics and Evolution 26: 1–7.PubMedCrossRefGoogle Scholar
  71. Zofkova, M. & B. V. Timms, 2009. A conflict of morphological and genetic patterns in the Australian anostracan Branchinella longirostris. Hydrobiologia 635: 67–80.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  • Tom Pinceel
    • 1
    Email author
  • Bram Vanschoenwinkel
    • 1
  • Aline Waterkeyn
    • 1
  • Maarten P. M. Vanhove
    • 2
  • Adrian Pinder
    • 3
  • Brian V. Timms
    • 4
    • 5
  • Luc Brendonck
    • 1
  1. 1.Laboratory of Aquatic Ecology and Evolutionary BiologyKULeuvenLeuvenBelgium
  2. 2.Laboratory of Animal Diversity and SystematicsKULeuvenLeuvenBelgium
  3. 3.Department of Environment and ConservationWildlife PlaceWoodvaleAustralia
  4. 4.Australian MuseumSydneyAustralia
  5. 5.Australian Wetland and Rivers Centre, BEESUniversity of New South WalesKensingtonAustralia

Personalised recommendations