Skip to main content

Advertisement

Log in

Unimodal patterns of microbial communities with eutrophication in Mediterranean shallow lakes

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

The role of the microbial communities in the classical planktonic food web and its response to eutrophication in shallow lakes is still contradictory. Mediterranean shallow lakes with different eutrophication levels were sampled to study the influence of eutrophication on the microbial food web (MFW) and their contribution to the planktonic food web. Percentage of ciliate biomass in the metazooplankton (MZP) showed a U-shaped trend with eutrophication, with maximum at both ends of the chlorophyll-a (Chla) gradient. The MZP to phytoplankton ratio demonstrated a unimodal pattern with minimum values at the two ends of the Chla gradient and maximum values in the Chla range 5-10 μg l−1. In contrast, the MFW to phytoplankton ratio reached its minimum in the central part of the Chla gradient and maximum values at the extremes of the gradient. These patterns support the hypothesis that the relative importance of bacteria and ciliates is lowest in mesotrophic shallow lakes, and highest in oligotrophic and hypereutrophic systems. These results stress the importance of protozoan in the trophic web, and indicate it is essential to include this group, especially ciliates, when quantifying zooplankton in warm shallow lakes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adrian, R. & B. Schneider-Olt, 1999. Top-down effects of crustacean zooplankton on pelagic microorganisms in a mesotrophic lake. Journal of Plankton Research 21: 2175–2190.

    Article  Google Scholar 

  • AEMET & IM, 2011. Iberian Climate Atlas. Agencia Estatal de Meteorología and Instituto de Meteorologia, Madrid.

    Google Scholar 

  • APHA, 1995. Standard Methods for the Examination of Water and Wastewater, 19th ed. American Public Health Association, Washington, DC.

    Google Scholar 

  • Arvola, L., 1981. Spectrophotometric determination of chlorophyll-a and phaeopigments in ethanol extractions. Annales Botanici Fennici 18: 221–227.

    CAS  Google Scholar 

  • Auer, B., U. Elzer & H. Arndt, 2004. Comparison of pelagic food webs in lakes along a trophic gradient and with seasonal aspects: influence of resource and predation. Journal of Plankton Research 26: 697–709.

    Article  Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnology and Oceanography 27: 246–253.

    Article  Google Scholar 

  • Beaver, J. R. & T. L. Crisman, 1989. The role of ciliated protozoa in pelagic freshwater ecosystems. Microbial Ecology 17: 111–136.

    Article  Google Scholar 

  • Bécares, E., A. Conty, C. Rodríguez-Villafañe & S. Blanco, 2004. Funcionamiento de los lagos someros mediterráneos. Ecosistemas 13: 1–14.

    Google Scholar 

  • Beklioglu, M., S. Romo, I. Kagalou, X. Quintana & E. Bécares, 2007. State of the art in the functioning of shallow Mediterranean lakes: workshop conclusions. Hydrobiologia 584: 317–326.

    Article  Google Scholar 

  • Berninger, U.-G., B. J. Finlay & P. Kuuppo-Leinikki, 1991. Protozoan control of bacterial abundances in freshwater. Limnology and Oceanography 36: 139–147.

    Article  Google Scholar 

  • Blanco, S., S. Romo, M. J. Villena & S. Martínez, 2003. Fish communities and food web interactions in some shallow Mediterranean lakes. Hydrobiologia 506: 473–480.

    Article  Google Scholar 

  • Blanco, S., S. Romo & M. J. Villena, 2004. Experimental study on the diet of mosquitofish (Gambusia holbrooki) under different ecological conditions in a shallow lake. International Review of Hydrobiology 89: 250–262.

    Article  Google Scholar 

  • Bottrell, H. H., A. Duncan, Z. M. Gliwicz, E. Grygierek, A. Herzig, A. Hillbricht-IIkowska, H. Kurasawa, P. Larsson & T. Weglenska, 1976. A review of some problems in zooplankton production studies. Norwegian Journal of Zoology 24: 419–456.

    Google Scholar 

  • Chaney, A. L. & E. P. Morbach, 1982. Modified reagents for the determination of urea and ammonia. Clinical Chemistry 8: 130–132.

    Google Scholar 

  • Chróst, R. J. & W. Siuda, 2006. Microbial production, utilization and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient. Limnology and Oceanography 51: 749–762.

    Article  Google Scholar 

  • Conty, A., F. García-Criado & E. Bécares, 2007. Changes in bacterial and ciliate densities with trophic status in Mediterranean shallow lakes. Hydrobiologia 584: 327–335.

    Article  CAS  Google Scholar 

  • Cotner, J. B. & B. A. Biddanda, 2002. Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 2: 105–121.

    Article  Google Scholar 

  • Dumont, H. J., I. Van de Velde & S. Dumont, 1975. The dry weight estimate of biomass of a selection of Cladocera, Copepoda, and Rotifera from the plankton, periphyton, and benthos of continental waters. Oecologia 19: 75–97.

    Article  Google Scholar 

  • Fernández-Aláez, M., C. Fernández-Aláez, E. Bécares, M. Valentín, J. Gomá & P. Castillo, 2004. A 2-year experimental study on nutrient and predator influences on food web constituents in a shallow lake of north-west Spain. Freshwater Biology 49: 1574–1592.

    Article  Google Scholar 

  • Gasol, J. M., R. Guerrero & C. Pedrós-Alió, 1991. Seasonal variations in size structure and prokaryotic dominance in sulphurous Lake Cisó. Limnology and Oceanography 36: 860–872.

    Article  Google Scholar 

  • Goubanova, K. & L. Li, 2007. Extremes in temperature and precipitation around the Mediterranean basin in an ensemble of future climate scenario simulations. Global and Planetary Change 57: 27–42.

    Article  Google Scholar 

  • Guerrero, R. & C. Pedrós-Alió, 1992. The microbial component in Spanish aquatic ecosystems. Limnetica 8: 175–184.

    Google Scholar 

  • Jeffrey, S. W. & G. C. Humphrey, 1975. New spectrophotometric equations for the determination of chlorophylls-a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167: 191–194.

    CAS  Google Scholar 

  • Jeppesen, E., 1998. The ecology of shallow lakes: trophic interactions in the pelagial. Ph.D. Thesis, National Environmental Research Institute, Silkeborg, Denmark. NERI Technical Report 247.

  • Jeppesen, E., M. Erlandsen & M. Søndergaard, 1997. Can simple empirical equations describe the seasonal dynamics of bacterioplankton in lakes? An eight-year study in shallow hypertrophic and biologically highly dynamic lake Søbygård, Denmark. Microbial Ecology 34: 11–26.

    Article  PubMed  Google Scholar 

  • Jeppesen, E., M. Søndergaard, N. Mazzeo, M. Meerhoff, C. Branco, V. Huszar & F. Scasso, 2005. Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In Reddy, M. V. (ed.), Tropical Eutrophic Lakes: Their Restoration and Management. Oxford & IBH Publishing Co, New Delhi: 331–359.

    Google Scholar 

  • Jerome, C. A., D. J. S. Montagnes & F. J. R. Taylor, 1993. The effect of the quantitative protargol stain and lugol’s and bouin’s fixatives on cell size: a more accurate estimate of ciliate species biomass. Journal of Eukaryotic Microbiology 40: 254–259.

    Article  Google Scholar 

  • Jürgens, K. & E. Jeppesen, 1998. Cascading effects on microbial food web structure in a dense macrophyte bed. In Jeppesen, E., Ma. Søndergaard, Mo. Søndergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes. Springer, Berlin. Ecological Studies 131: 262–273.

  • Latja, R. & K. Salonen, 1978. Carbon analysis for the determination of individual biomasses of planktonic animals. Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie 20: 2556–2560.

    Google Scholar 

  • Lau, S. S. S. & S. N. Lane, 2002. Biological and chemical factors influencing shallow lake eutrophication: a long-term study. Science of the Total Environment 288: 167–181.

    Article  PubMed  CAS  Google Scholar 

  • Lazzaro, X., M. Bouvy, R. A. Ribeiro-Filho, V. S. Oliveira, L. T. Sales, A. R. M. Vasconcelos & M. R. Mata, 2003. Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshwater Biology 48: 649–668.

    Article  Google Scholar 

  • Loferer-Kröβbacher, M., J. Klima & R. Psenner, 1998. Determination of bacterial cell dry mass by transmission electron microscopy and densitometric image analysis. Applied and Environmental Microbiology 64: 688–694.

    Google Scholar 

  • Matena, J., K. Šimek & C. H. Fernando, 1995. Ingestion of suspended bacteria by fish: a modified approach. Journal of Fish Biology 47: 334–336.

    Article  Google Scholar 

  • Mathes, J. & H. Arndt, 1994. Biomass and composition of protozoan plankton in relation to lake trophy in north German lakes. Marine Microbial Food Webs 8: 357–375.

    Google Scholar 

  • Meerhoff, M., C. Iglesias, F. Teixeira de Mello, J. M. Clemente, E. Jensen, T. Lauridsen & E. Jeppesen, 2007. Effects of habitat complexity on community structure and predator avoidance behaviour of littoral zooplankton in temperate versus subtropical shallow lakes. Freshwater Biology 52: 1009–1021.

    Article  Google Scholar 

  • Menden-Deuer, S. & E. J. Lessard, 2000. Carbon to volume relationships for dinoflagellates, diatoms and other protist plankton. Limnology and Oceanography 45: 569–579.

    Article  CAS  Google Scholar 

  • Moss, B., D. Stephen, D. Balayla, E. Bécares, S. E. Collings, C. Fernández-Aláez, M. Fernández-Aláez, C. Ferriol, P. García, J. Gomá, M. Gyllström, L.-A. Hansson, J. Hietala, T. Kairesalo, M. R. Miracle, S. Romo, J. Rueda, V. Rusell, A. Ståhl-Delbanco, M. Svennson, K. Vakkilainen, M. Valentín, W. J. Van de Bund, E. Van Donk, E. Vicente & M. J. Villena, 2004. Continental-scale patterns of nutrient and fish effects of shallow wetland lakes: synthesis of a pan-European mesocosm experiment. Freshwater Biology 49: 1633–1650.

    Article  CAS  Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Pace, M. L., 1986. An empirical analysis of zooplankton community structure across lake trophic gradients. Limnology and Oceanography 31: 45–55.

    Article  Google Scholar 

  • Pace, M. L., J. J. Cole & S. R. Carpenter, 1998. Trophic cascades and compensation: differential responses of microzoan plankton in whole-lake experiments. Ecology 79: 138–152.

    Article  Google Scholar 

  • Pace, M. L., J. J. Cole, S. R. Carpenter, J. F. Kitchell, J. R. Hodgson, M. C. Van de Bogert, D. L. Bade, E. S. Kritzberg & D. Bastviken, 2004. Whole-lake carbon-13 additions reveal terrestrial support of aquatic food webs. Nature 427: 240–243.

    Article  PubMed  CAS  Google Scholar 

  • Pfister, G., B. Auer & H. Arndt, 2002. Pelagic ciliates (Protozoa, Ciliophora) of different brackish and freshwater lakes: a community analysis at the species level. Limnologica 32: 147–168.

    Article  Google Scholar 

  • Pomeroy, L. R. & W. J. Wiebe, 1988. Energetics of microbial food webs. Hydrobiologia 159: 7–18.

    Article  Google Scholar 

  • Porter, K. G. & Y. S. Feig, 1980. The use of DAPI for identifying and counting aquatic microflora. Limnology and Oceanography 25: 943–948.

    Article  Google Scholar 

  • Porter, K. G., H. Paerl, R. Hodson, M. L. Pace, J. Priscu, B. Riemann, D. Scavia & J. Stockner, 1988. Microbial interactions in lake food webs. In Carpenter, S. R. (ed.), Complex Interactions in Lake Communities. Springer, Berlin: 209–227.

    Chapter  Google Scholar 

  • Posch, T., J. Pernthaler, A. Alfreider & R. Psenner, 1997. Cell-specific respiratory activity of aquatic bacteria studied with the tetrazolium reduction method, cyto-clear slides, and image analysis. Applied and Environmental Microbiology 63: 867–873.

    PubMed  CAS  Google Scholar 

  • Rahmatullah, S. M. & M. C. M. Beveridge, 1993. Ingestion of bacteria in suspension by Indian major carps (Catla catla, Labeo rohita) and Chinese carps (Hypophthalmichthys molitrix, Aristichtys nobilis). Hydrobiologia 264: 79–84.

    Article  Google Scholar 

  • Riemann, B. & K. Christoffersen, 1993. Microbial trophodynamics in temperate lakes. Marine Microbial Food Webs 7: 69–100.

    Google Scholar 

  • Rolff, C. & R. Elmgren, 2000. Use of riverine organic matter in plankton food webs of the Baltic Sea. Marine Ecology Progress Series 197: 81–101.

    Article  Google Scholar 

  • Romo, S., M. R. Miracle, M. J. Villena, J. Rueda, C. Ferriol & E. Vicente, 2004. Mesocosm experiments on nutrient and fish effects on shallow lake food webs in a Mediterranean climate. Freshwater Biology 49: 1593–1607.

    Article  CAS  Google Scholar 

  • Sánchez, E., C. Gallardo, M. A. Gaertner, A. Arribas & M. Castro, 2004. Future climate extreme events in the Mediterranean simulated by a regional climate model: a first approach. Global and Planetary Change 44: 180–183.

    Article  Google Scholar 

  • Sandberg, J., A. Andersson, S. Johansson & J. Wikner, 2004. Pelagic food web structure and carbon budget in three brackish water environments: potential importance of terrigenous carbon. Marine Ecology Progress Series 268: 13–29.

    Article  Google Scholar 

  • Sanders, R. W. & S. A. Wickham, 1993. Planktonic protozoa and metazoa: predation, food quality and population control. Marine Microbial Food Webs 7: 197–223.

    Google Scholar 

  • Sanders, R. W., K. G. Porter, S. J. Bennett & A. E. DeBiase, 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in a freshwater planktonic community. Limnology and Oceanography 34: 673–687.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Champman & Hall, New York.

    Google Scholar 

  • Sherr, E. B., D. A. Caron & B. F. Sherr, 1993. Staining of heterotrophic protists for visualization via epifluorescence microscopy. In Kemp, P. F., B. F. Sherr, E. B. Sherr & J. J. Cole (eds), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton: 213–227.

    Google Scholar 

  • Šimek, K., K. Jürgens, J. Nedoma, M. Comerma & J. Armengol, 2000. Ecological role and bacterial grazing of Halteria spp.: small freshwater oligotrichs as dominant pelagic ciliate bacterivores. Aquatic Microbial Ecology 22: 43–56.

    Article  Google Scholar 

  • Skibbe, O., 1994. An improved quantitative protargol stain for ciliates and other planktonic protists. Archiv für Hydrobiologie 130: 339–347.

    Google Scholar 

  • Stabell, T., 1996. Ciliate bacterivory in epilimnetic waters. Aquatic Microbial Ecology 10: 265–272.

    Article  Google Scholar 

  • StatSoft, Inc, 2004. STATISTICA (Data Analysis Software System), Version 6. Tulsa, StatSoft.

    Google Scholar 

  • Stoecker, D. K. & J. M. Capuzzo, 1990. Predation on protozoa: its importance to zooplankton. Journal of Plankton Research 12: 891–908.

    Article  Google Scholar 

  • Thouvenot, A., M. Richardot, D. Debroas & J. Devaux, 1999. Bacterivory of metazooplankton, ciliates and flagellates in a newly flooded reservoir. Journal of Plankton Research 21: 1659–1679.

    Article  Google Scholar 

  • Utermöhl, H., 1958. Zur Vervollkommung der quantitativen phytoplankton-methodik. Mitteilungen der internationalen Vereingung für theoretische und angewandte Limnologie 9: 1–38.

    Google Scholar 

  • Weisse, T., 1991. The microbial food web and its sensitivity to eutrophication and contaminant enrichment: a cross-system overview. Internationale Revue der Gesamten Hydrobiologie 76: 327–337.

    Article  Google Scholar 

  • Weisse, T. & J. Stockner, 1994. Eutrophication: the role of microbial food webs. In Proceedings of the Fifth International Conference on Conservation and Management of Lakes: 191–194.

  • Wetzel, R. G., 2001. Limnology: Lake and River Ecosystems, 3rd ed. Academic Press, San Diego.

    Google Scholar 

  • Zingel, P., E. Huitu, S. Mäkelä & L. Arvola, 2002. The abundance and diversity of planktonic ciliates in 12 boreal lakes of varying trophic state. Archiv für Hydrobiologie 155: 315–332.

    Google Scholar 

Download references

Acknowledgments

We would like to express our thanks to Cristina Trigal, Saúl Blanco, Celia de la Vega, Joan Gomá, and all the other members of the limnology group at the University of Leon. We also thank Phaedra Budy for critical reading of the manuscript and valuable comments. This research was funded by the University of León, the Spanish Ministry of Science and Technology (REN2003-03718/HID), and the Castilla y León Government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloy Bécares.

Additional information

Handling editor: Mariana Meerhoff

Rights and permissions

Reprints and permissions

About this article

Cite this article

Conty, A., Bécares, E. Unimodal patterns of microbial communities with eutrophication in Mediterranean shallow lakes. Hydrobiologia 700, 257–265 (2013). https://doi.org/10.1007/s10750-012-1235-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1235-5

Keywords

Navigation