, Volume 698, Issue 1, pp 111–120 | Cite as

Sedimentation of phytoplankton: role of ambient conditions and life strategies of algae



Pigment content in particles accumulated in sediment traps are often not directly correlated with phytoplankton abundance, but are rather indicative of transformations phytoplankton underwent on its downward move and following resuspension. We argue that the variability in temporal and spatial sedimentation patterns of different phytoplankton groups is not only an outcome of pigment persistence, but is also associated with dissimilarity in life strategies and dependent on the physical conditions of the water column. Pigment concentrations were measured on weekly–biweekly basis in the water column and in five sets of traps positioned in Lake Kinneret, Israel. Highly degradable peridinin and chlorophyll c reached the deep traps in minute quantities indicating that dinoflagellates mostly recycled in the epilimnion; these migrating algae dominated plankton community under low turbulence and high light. When fast-sinking diatoms persisted in the water column during holomixis they could reach the bottom intact, and fucoxanthin was found in equal proportions in water and traps, chlorophytes rarely dominated phytoplankton, but lutein and chlorophyll b harbored by this group were often the most abundant signature pigments in traps, reflecting the effect of high accumulation rates of these stable compounds in resuspensed particles from the bottom.


Sedimentation Photosynthetic pigments Phytoplankton Decomposition Resuspension Material transport 


  1. Alster, A., R. N. Kaplan-Levy, A. Sukenik & T. Zohary, 2010. Morphology and phylogeny of a non-toxic invasive Cylindrospermopsis raciborskii from a Mediterranean Lake. Hydrobiologia 639: 115–128.CrossRefGoogle Scholar
  2. Batterbee, R. W., V. J. Jones, R. J. Flower, N. G. Cameron, H. Bennion, L. Carvalho & S. Juggins, 2003. Diatoms. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Changes Using Lake Sediments, Vol. 3. Kluwer Academic, Dordrecht, The Netherlands: 155–202.CrossRefGoogle Scholar
  3. Berman, T. & Y. Elias, 1973. Lake Kinneret: synoptic studies of chlorophyll concentrations. In Shuval, H. (ed.), Proceedings of the 4th Israel Ecological Society Conference. F. Balaban, Rehovot: 19–27.Google Scholar
  4. Bloesch, J., 2004. Sedimentation and lake sediment formation. In O’Sullivan, P. E. & C. S. Reynolds (eds), The Lakes Handbook, vol. 2: Lake Restoration and Rehabilitation. Blackwell Publishing, Malden, MA: 197–229.Google Scholar
  5. Bloesh, J., 1995. Mechanisms, measurement and importance of sediment resuspension in lakes. Marine & Freshwater Research 46: 295–304.Google Scholar
  6. Frechette, M., C. Butman & W. R. Geyer, 1989. The importance of boundary-layer flows in supplying phytoplankton to the benthic suspension feeder, Mytilus edulis L. Limnology and Oceanography 34: 19–36.CrossRefGoogle Scholar
  7. Graf, G., W. Bengtsson, U. Diesner, R. Schulz & H. Theede, 1982. Benthic response to sedimentation of a spring phytoplankton bloom: process and budget. Marine Biology 67: 201–208.CrossRefGoogle Scholar
  8. Hirschberg, J. & D. Chamovitz, 1994. Carotenoids in cyanobacteria. In Bryant, D. A. (ed.), The Molecular Biology of Cyanobacteria. Kluwer Academic, Dordrecht, The Netherlands: 559–579.CrossRefGoogle Scholar
  9. Hurley, J. P. & D. E. Armstrong, 1990. Fluxes and transformations of aquatic pigments in Lake Mendota, Wisconsin. Limnology and Oceanography 35: 384–398.CrossRefGoogle Scholar
  10. Jeffrey, S. W., R. F. C. Mantoura & S. W. Wright (eds), 1997. Phytoplankton Pigments in Oceanography. UNESCO Publishing, Paris.Google Scholar
  11. Koren, N. & M. Klein, 2000. Rate of sedimentation in Lake Kinneret, Israel: spatial and temporal variations. Earth Surface Processes and Landforms 25: 895–904.CrossRefGoogle Scholar
  12. Leavitt, P. R., 1993. A review of factors that regulate carotenoid and chlorophyll deposition and fossil pigment abundance. Journal of Paleolimnology 9: 109–127.CrossRefGoogle Scholar
  13. Leavitt, P. R. & D. A. Hodgson, 2003. Sedimentary pigments. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Changes Using Lake Sediments, Vol. 3. Kluwer Academic, Dordrecht, The Netherlands: 295–325.CrossRefGoogle Scholar
  14. Lemckert, C., J. Antenucci, A. Saggio & J. Imberger, 2004. Physical properties of turbulent benthic boundary layers generated by internal waves. Journal of Hydraulic Engineering 130: 58–69.CrossRefGoogle Scholar
  15. Louda, W. J., L. Liu & E. W. Baker, 2002. Senescence- and death-related alteration of chlorophylls and carotenoids in marine phytoplankton. Organic Geochemistry 33: 1635–1653.CrossRefGoogle Scholar
  16. Margalef, R., 1997. Our Biosphere. In Kinne, O. (ed.), Excellence in Ecology Book 10. Ecology Institute, Oldendorf/Luhe, Germany: XIX 194 pp.Google Scholar
  17. Markel, D., Y. Kolodny, B. Luz & A. Nishri, 1994. Phosphorus cycling and phosphorus sources in Lake Kinneret: tracing by oxygen isotopes in phosphate. Israel Journal of Earth Sciences 43: 165–178.Google Scholar
  18. Martín-Closas, C., 2003. The fossil record and evolution of freshwater plants: a review. Geologica Acta 1: 315–338.Google Scholar
  19. Ostrovsky, I. & Y. Z. Yacobi, 2009. Temporal evolution and spatial heterogeneity of ecosystem parameters in a subtropical lake. In Ciraolo, G., G. B. Ferreri & E. Napoli (eds), Proceedings 13th Workshop on Physical Processes in Natural Waters, Palermo, Italy, 1–4 September 2009: 1–15. ISBN 978-88-903895-0-4.Google Scholar
  20. Ostrovsky, I. & Y. Z. Yacobi, 1999. Organic matter and pigments in surface sediments: possible mechanisms of their horizontal distribution in a stratified lake. Canadian Journal of Fisheries and Aquatic Sciences 56: 1001–1010.Google Scholar
  21. Ostrovsky, I. & Y. Z. Yacobi, 2010. Sedimentation flux in a large subtropical lake: spatio-temporal variations and relation to primary productivity. Limnology and Oceanography 55: 1918–1931.CrossRefGoogle Scholar
  22. Reynolds, C. S., 2006. Ecology of Phytoplankton. Cambridge University Press, Cambridge, UK.CrossRefGoogle Scholar
  23. Schallenberg, M. & C. W. Burns, 2004. Effects of sediment resuspension on phytoplankton production: teasing apart the influences of light, nutrients and algal entrainment. Freshwater Biology 49: 143–159.CrossRefGoogle Scholar
  24. Serruya, S., 1974. The mixing patterns of the Jordan River in Lake Kinneret. Limnology and Oceanography 19: 175–181.CrossRefGoogle Scholar
  25. Sicko-Goad, L., 1986. Rejuvenation of Melosira granulata (Bacillariophyceae) resting cells from anoxic sediments of Douglas Lake. Michigan. I. Electron microscopy. Journal of Phycology 22: 28–35.CrossRefGoogle Scholar
  26. Steenbergen, C. L. M., H. J. Korthals & E. G. Dobrynin, 1994. Algal and bacterial pigments in non-laminated lacustrine sediment: studies of their sedimentation, degradation and stratigraphy. FEMS Microbiology Ecology 13: 335–351.CrossRefGoogle Scholar
  27. Viner-Mozzini, Y., T. Zohary & A. Gasith, 2003. Dinoflagellate bloom development and collapse in Lake Kinneret: a sediment trap study. Journal of Plankton Research 25: 591–602.CrossRefGoogle Scholar
  28. Volkman, J. K., 1986. A review of sterol markers for marine and terrigenous organic matter. Organic Geochemistry 9: 83–99.CrossRefGoogle Scholar
  29. Wüest, A. & A. Lorke, 2003. Small-scale hydrodynamics in lakes. Annual Review of Fluid Mechanics 35: 373–412.CrossRefGoogle Scholar
  30. Yacobi, Y. Z. & M. Schlichter, 2004. GIS application for mapping of phytoplankton using a multi-channel fluorescence probe derived information. In Chen, Y., K. Takara, I. D. Cluckie, & F. H. De Smedt (eds), GIS and Remote Sensing in Hydrology, Water Resources and Environment, IHAS Publication 289. International Association of Hydrological Sciences Press: 301–307.Google Scholar
  31. Yacobi, Y. Z. & I. Ostrovsky, 2000. Chloropigments in Lake Kinneret bottom sediments: mechanisms of spatial distribution during holomixis. Archive für Hydrobiologie Special Issues Advances in Limnology 55: 457–469.Google Scholar
  32. Yacobi, Y. Z. & I. Ostrovsky, 2008. Downward flux of organic matter and pigments in Lake Kinneret (Israel): relationships between phytoplankton and the material collected in sediment traps. Journal of Plankton Research 30: 1189–1202.CrossRefGoogle Scholar
  33. Zeeb, B. A. & J. P. Smol, 2003. Chrysophyte scales and cysts. In Smol, J. P., H. J. B. Birks & W. M. Last (eds), Tracking Environmental Changes Using Lake Sediments, Vol. 3. Kluwer Academic, Dordrecht, The Netherlands: 203–224.CrossRefGoogle Scholar
  34. Zohary, T. & M. Shlichter, 2009. Invasion of Lake Kinneret by the N2-fixing cyanobacterium Cylindrospermopsis cuspis Komarek and Kling. Verhandlungen der Internationale Vereinigung fuer theoretische und angewandte Limnologie 30: 1251–1254.Google Scholar
  35. Züllig, H., 1981. On the use of carotenoid stratigraphy in lake sediments for detecting past developments of phytoplankton. Limnology and Oceanography 26: 970–976.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2012

Authors and Affiliations

  1. 1.Israel Oceanographic & Limnological Research Ltd.Yigal Allon Kinneret Limnological LaboratoryMigdalIsrael

Personalised recommendations