Skip to main content
Log in

Adaptation of submerged macrophytes to both water depth and flood intensity as revealed by their mechanical resistance

  • Primary Research Paper
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Little is known about the mechanical resistance response of submerged macrophytes to floods. An experiment was conducted to investigate the plant growth, root anchorage strength, and stem tensile properties of five submerged macrophytes under three initial water levels (1.0, 2.5, and 4.0 m) with four water level fluctuation speeds (0, 5, 15, and 25 cm d−1). Our results demonstrate that the biomass, relative growth rate, root anchorage strength, and stem tensile properties of the five species decreased with increasing initial water level, suggesting that deep water can inhibit plant growth and decrease their mechanical resistance. Floods weakened the stem tensile properties and strengthened the root performances of Myriophyllum spicatum, Hydrilla verticillata, and Potamogeton malaianus in shallow water. However, floods induced opposite mechanical resistance responses from plants in deep water, indicating a possible trade-off between stem breakage and uprooting under flooding conditions. M. spicatum, Ceratophyllum demersum, and P. malaianus were more tolerant of deep water and flood intensity than Potamogeton maackianus and H. verticillata, as indicated by their larger biomass, plant heights, stem tensile properties, and root anchorage strength. This is the first article that mechanically explains the competitive capability and survival potential of submerged macrophytes to water depth and flood intensity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • APHA, 1995. Standard Methods for the Examination of Water and Wastewater (19th ed.). American Public Health Association, Washington, DC: 1268.

  • Barko, J. W. & R. M. Smart, 1981. Comparative influence of light and temperature on growth and metabolism of selected submersed freshwater macrophytes. Ecological Monographs 51: 219–235.

    Article  Google Scholar 

  • Best, E. P. T., C. P. Buzzeli, S. M. Bartell, R. Wetzel, W. A. Boyd, R. D. Doyl & K. R. Cmpbell, 2001. Modeling submersed macrophyte growth in relation to underwater light climate: modeling approaches and application potential. Hydrobiologia 444: 43–70.

    Article  Google Scholar 

  • Bociag, K., A. Galka, T. Lazarewicz & J. Szmeja, 2009. Mechanical strength of stems in aquatic macrophytes. Acta societatis botanicorum poloniae 78: 181–187.

    Google Scholar 

  • Bornette, G. & S. Puijalon, 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Science 73: 1–14.

    Article  CAS  Google Scholar 

  • Brewer, C. A. & M. Parker, 1990. Adaptations of macrophytes to life in moving water: upslope limits and mechanical properties of stems. Hydrobiologia 194: 133–142.

    Article  Google Scholar 

  • Brock, T. C. M., G. Van der Velde & H. M. Van de Steeg, 1987. The effects of extreme water level fluctuations on the wetland vegetation of a Nymphaeid-dominated oxbow lake in the Netherlands. Archiv für Hydrobiologie 27: 57–73.

    Google Scholar 

  • Casanova, M. T. & M. A. Brock, 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology 147: 237–250.

    Article  Google Scholar 

  • Chambers, P. A., 1987. Light and nutrients in control of aquatic plant community structure. II. In situ observations. Journal of Ecology 75: 621–628.

    Article  Google Scholar 

  • Chambers, P. A. & J. Kalff, 1985a. Depth distribution and biomass of submersed aquatic macrophyte communities in relation to secchi depth. Canadian Journal of Fisheries and Aquatic Sciences 42: 701–709.

    Article  Google Scholar 

  • Chambers, P. A. & J. Kalff, 1985b. The influence of sediment and irradiance on the growth and morphology of Myriophyllum spicatum L. Aquatic Botany 22: 253–263.

    Article  Google Scholar 

  • Chambers, P. A. & J. Kalff, 1987. Light and nutrients in the control of aquatic plant community structure. 1. In situ experiments. Journal of Ecology 75: 611–619.

    Article  Google Scholar 

  • Chambers, P. A. & E. E. Prepas, 1988. Underwater spectral attenuation and its effect on the maximum depth of angiosperm colonisation. Canadian Journal of Fisheries and Aquatic Sciences 45: 1010–1017.

    Article  Google Scholar 

  • Chen, H., 1990. Aqautic vascular plants. In Liu, J. (ed.), Ecological Study of Lake Donghu. Science Press, China: 94–103. (in Chinese).

    Google Scholar 

  • Crook, M. J. & A. R. Ennos, 1996. Mechanical differences between freestanding and supported wheat plants Triticum aestivum L. Annals of Botany 77: 197–202.

    Article  Google Scholar 

  • Cui, X. H., Y. Zhong, W. Li & J. K. Chen, 2000. The effect of catastrophic flood on biomass and density of three dominant aquatic plant species in the Poyang Lake. Acta hydrobiologica sinica 24: 322–325.

    Google Scholar 

  • Denny, M., 1988. Biology and the Mechanics of the Wave-Swept Environment. Princeton University Press, Princeton.

    Google Scholar 

  • Fan, G. L. & W. Li, 2005. Response of nutrient accumulation characteristics and nutrient strategy of Myriophyllum spicatum L. under different eutrophication conditions (in Chinese). Journal of Wuhan Botanical Research 3: 267–271. (in Chinese).

    Google Scholar 

  • Fernández-Aláez, C., M. Fernández-Aláez & E. Bécares, 1999. Influence of water level fluctuation on the structure and composition of the macrophyte vegetation in two small temporary lakes in the northwest of Spain. Hydrobiologia 415: 155–162.

    Article  Google Scholar 

  • Gacia, E. & E. Ballesteros, 1996. The effect of increased water level on Isoetes lacustris L. in Lake Baciver, Spain. Journal of Aquatic Plant Management 34: 57–59.

    Google Scholar 

  • Goodman, A. M. & A. R. Ennos, 1996. A comparative study of the response of the roots and shoots of sunflower and maize to mechanical stimulation. Journal of Experimental Botany 47: 1499–1507.

    Article  CAS  Google Scholar 

  • Guo, Y. H. & Q. Y. Li, 1992. Potamogetonaceae. Science Press, Beijing. (in Chinese).

  • Handley, R. J. & A. J. Davy, 2002. Seedling root establishment may limit Najas marina L. to sediments of low cohesive strength. Aquatic Botany 73: 129–136.

    Article  Google Scholar 

  • Havens, K. E., 2003. Submerged aquatic vegetation correlations with depth and light attenuating materials in a shallow subtropical lake. Hydrobiologia 493: 173–186.

    Article  Google Scholar 

  • Havens, K. E., K. R. Jin, A. J. Rodusky, B. Sharfstein, M. A. Brady, T. L. East, N. Iricanin, R. T. James, M. C. Harwell & A. D. Steinman, 2001. Hurricane effects on a shallow lake ecosystem and its response to a controlled manipulation of water level. The Scientific World 1: 44–70.

    Article  CAS  Google Scholar 

  • Hudon, C., S. Lalonde & P. Gagnon, 2000. Ranking the effects of site exposure, plant growth form, water depth, and transparency on aquatic plant biomass. Canadian Journal of Fisheries and Aquatic Sciences 57: 31–42.

    Article  Google Scholar 

  • Idestam-Almquist, J. & L. Kautsky, 1995. Plastic responses in morphology of Potamogeton pectinatus L. to sediment and above-sediment conditions at two sites in the northern Baltic proper. Aquatic Botany 52: 205–216.

    Article  Google Scholar 

  • Kalra, Y. P. & D. G. Maynard, 1991. Methods manual for forest soil and plant analysis. Forestry Canada, Northwest Region, Northern Forestry Centre NOR-X-319.

  • Keddy, P. A., 1983. Shoreline vegetation in Axe Lake, Ontario: effects of exposure on zonation patterns. Ecology 64: 331–344.

    Article  Google Scholar 

  • Kirk, J. T. O., 1994. Light and Photosynthesis in Aquatic Ecosystems, 2nd ed. Cambridge University Press, New York: 509.

    Book  Google Scholar 

  • Koehl, M. A. R., 1984. How do benthic organisms withstand moving water? American Zoologist 24: 57–70.

    Google Scholar 

  • Madsen, J. D. & C. Owens, 1998. Seasonal biomass and carbohydrate allocation in dioecious Hydrilla. Journal of Aquatic Plant Management 36: 138–145.

    Google Scholar 

  • Madsen, J. D., C. F. Hartleb & C. W. Boylen, 1991. Photosynthetic characteristics of Myrphllunr spicatum and six submersed aquatic macrophyte species native to Lake George. Freshwater Bio1ogy 26: 233–240.

    Article  Google Scholar 

  • Mäemets, H. & L. Freiberg, 2007. Coverage and depth limits of macrophytes as tools for classification of lakes. Proceedings of the Estonian Academy of Sciences: Biology, Ecology 56: 124–140.

    Google Scholar 

  • Middelboe, A. L. & S. Markager, 1997. Depth limits and minimum light requirements of freshwater macrophytes. Freshwater Biology 37: 553–568.

    Article  Google Scholar 

  • Miler, O., I. Albayrak, V. Nikora & T. Crane, 2010. Biomechanics of aquatic plants and its role in flow-vegetation interactions. Conference paper, RiverFlow, Braunschweig, Germany.

  • Miler, O., I. Albayrak, V. Nikora & M. O’ Hare, 2012. Biomechanical properties of aquatic plants and their effects on plant-flow interactions in streams and rivers. Aquatic Sciences 74: 31–44.

    Article  Google Scholar 

  • Murphy, J. & J. P. Riley, 1962. A modified single solution method for the determination of phosphate in natural waters. Analytica Chimica Acta 27: 31–36.

    Article  CAS  Google Scholar 

  • Ni, L. Y., 2001. Growth of Potamogeton niaackianiis under low-light stress in eutrophic water. Journal of Freshwater Ecology 16: 249–256.

    Article  Google Scholar 

  • Niklas, K. J., 1998. Effects of vibration on mechanical properties and biomass allocation pattern of Capsella bursa-pastoris (Cruciferae). Annals of Botany 82: 147–156.

    Article  Google Scholar 

  • Patterson, M. R., M. C. Harwell, L. M. Orth & R. J. Orth, 2001. Biomechanical properties of the reproductive shoots of eelgrass. Aquatic Botany 69: 27–40.

    Article  Google Scholar 

  • Peng, W. Q., S. Y. Wang & X. B. Liu, 2005. Assessment on Erhai Lake water quality. Journal of China Institute of Water Resources and Hydropower Research 3: 192–198.

    Google Scholar 

  • Puijalon, S., T. J. Bouma, C. J. Douady, J. Groenendael, N. P. R. Anten, E. Martel & G. Bornette, 2011. Plant resistance to mechanical stress: evidence of an avoidance–tolerance trade-off. New Phytologist 191: 1141–1149.

    Article  PubMed  CAS  Google Scholar 

  • Qiu, D. G., Z. B. Wu, B. Y. Liu, J. Q. Deng, G. P. Fu & F. He, 2001. The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China. Ecological Engineering 18: 147–156.

    Article  Google Scholar 

  • Sand-Jensen, K., 2003. Drag and reconfiguration of freshwater macrophytes. Freshwater Biology 48: 271–283.

    Article  Google Scholar 

  • Scheffer, M., 1998. Ecology of Shallow Lakes. Chapman and Hall, London.

    Google Scholar 

  • Schutten, J. & A. J. Davy, 2000. Predicting hydraulic forces on submerged macrophytes from current velocity, biomass and morphology. Oecologia 123: 445–452.

    Article  Google Scholar 

  • Schutten, J., J. Dainty & A. J. Davy, 2004. Wave-induced hydraulic forces on submersed aquatic plants in shallow lakes. Annals of Botany 93: 333–341.

    Article  PubMed  CAS  Google Scholar 

  • Schutten, J., J. Dainty & A. J. Davy, 2005. Root anchorage and its significance for submersed plants in shallow lakes. Journal of Ecology 93: 556–571.

    Article  Google Scholar 

  • Sheldon, R. B. & C. W. Boylen, 1977. Maximum depth inhabited by aquatic vascular plants. American Midland Naturalist 97: 248–254.

    Article  Google Scholar 

  • Sousa, W. T. Z., S. M. Thomaz & K. J. Murphy, 2010. Response of native Egeria najas Planch. and invasive Hydrilla verticillata (L.f.) Royle to altered hydroecological regime in a subtropical river. Aquatic Botany 92: 40–48.

    Article  Google Scholar 

  • Sparkes, D. L. & M. King, 2008. Disentangling the effects of PAR and R:FR on lodging-associated characters of wheat (Triticum aestivum). Annals of Applied Biology 152: 1–9.

    Article  Google Scholar 

  • Sparkes, D. L., P. Berry & M. King, 2008. Effects of shade on root characters associated with lodging in wheat (Triticum aestivum). Annals of Applied Biology 152: 389–395.

    Article  Google Scholar 

  • Spence, D. H. N., 1982. The zonation of plants in freshwater lakes. Advances in Ecological Research 12: 37–126.

    Article  Google Scholar 

  • Strand, J. A. & S. E. B. Weisner, 2001. Morphological plastic responses to water depth and wave exposure in an aquatic plant (Myriophyllum spicatum). Journal of Ecology 89: 166–175.

    Article  Google Scholar 

  • Sun, X. Z., 1992. Flora Sinica, Vol. 8. Science Press, Beijing: 60. (in Chinese).

  • Thomaz, S. M., T. A. Pagioro, L. M. Bini & K. J. Murphy, 2006. Effect of reservoir drawdown on biomass of three species of aquatic macrophytes in a large sub-tropical reservoir (Itaipu, Brazil). Hydrobiologia 570: 53–59.

    Article  Google Scholar 

  • Usherwood, J. R., A. R. Ennos & D. J. Ball, 1997. Mechanical and anatomical adaptations in terrestrial and aquatic buttercups to their respective environments. Journal of Experimental Botany 312: 1469–1475.

    Article  Google Scholar 

  • Voesenek, L. A. C. J., A. M. Banga, R. H. Thier, C. M. Mudde, F. J. M. Harren, G. W. M. Barendse & C. W. P. M. Blom, 1993. Submergence induced ethylene synthesis, entrapment and growth in two plant species with a contrasting flooding resistance. Plant Physiology 103: 783–791.

    PubMed  CAS  Google Scholar 

  • Voesenek, L. A. C. J., T. D. Colmer, R. Pierik, F. F. Millenaar & A. J. M. Peeters, 2006. How plants cope with complete submergence. New Phytologist 170: 213–226.

    Article  PubMed  CAS  Google Scholar 

  • Vogel, S., 1981. Life in Moving Fluids: The Physical Biology of Flow. Willard Grant Press, Boston.

    Google Scholar 

  • Wallsten, M. & P. O. Forsgren, 1989. The effects of increased water level on aquatic macrophytes. Journal of Aquatic Plant Management 27: 32–37.

    Google Scholar 

  • Wetzel, R. G., 1983. Structure and productivity of aquatic ecosystems. In Wetzel, R. G. (ed.), Limnology (2nd ed). CBS College Publishing: 134–156, 519–590.

  • Yang, Y. Q., D. Yu, Y. K. Li, Y. H. Xie & X. H. Geng, 2004. Phenotypic plasticity of two submersed plants in responses to flooding. Journal of Freshwater Ecology 19: 69–76.

    Article  Google Scholar 

  • Yu, L. F. & D. Yu, 2009. Responses of the threatened aquatic plant Ottelia alismoides to water level fluctuations. Fundamental and Applied Limnology. Archiv für Hydrobiologie 174: 295–300.

    Google Scholar 

  • Zhu, G. R., M. Zhang, T. Cao, L. Y. Ni, A. W. Zhong & H. Fu, 2012. Effects of sediment type on stem mechanical properties of the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Fresenius Environmental Bulletin 21: 468–474.

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. T. Cao and Dr. J. Xu for the helpful suggestions on this manuscript. We also thank two anonymous native speakers for their kind help to improve the manuscript. This work was funded by the project “Core Technology and Model Project for Environmental and Ecological Improvement of Erhai” (National High Technology Research and Development Program of China, Grant No. 2012ZX07105004, 2008ZX07101-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Leyi Ni.

Additional information

Handling editor: Koen Martens

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 74 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhu, G., Li, W., Zhang, M. et al. Adaptation of submerged macrophytes to both water depth and flood intensity as revealed by their mechanical resistance. Hydrobiologia 696, 77–93 (2012). https://doi.org/10.1007/s10750-012-1185-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1185-y

Keywords

Navigation