Skip to main content

Advertisement

Log in

Exclosure study on the exploitation of macrophytes by summering and moulting waterbirds at Lower Lake Constance

  • LIMNOLOGY AND AQUATIC BIRDS
  • Published:
Hydrobiologia Aims and scope Submit manuscript

Abstract

Owing to synchronous moult, most waterbird species are constrained by flightlessness and limited mobility for several weeks. As new feather production is energy demanding, these birds need to choose a safe moulting site with appropriate food supply. Up to 20,000 waterbirds carry out moult at Lake Constance, gathering at sites where they find food close to safe hiding places from predators and human-caused disturbance. In this study, we focused on the food supply at one prominent moulting site, Mettnau Südbucht, at Lower Lake Constance. We aimed to determine the food items and quantity as well as their utilization by summering and moulting waterbirds. We conducted experiments with exclosure cages which protected macrophytes from bird grazing and compared these sites with unprotected grazed sites. In these experiments, we found that the summering and moulting waterbird community, dominated by Eurasian Coots (Fulica atra Linnaeus), caused a significant decline of the macrophyte biomass at 1.5-m depth (MWL), where they were responsible for a loss of over 40% of the total charophyte biomass. No grazing effect was found at a greater depth (2-m MWL). The available food consisted mostly of Chara spp. with a biomass density of about 350 g m−2. Animal food items were negligible: Macroinvertebrates, mainly Asellus aquaticus Linnaeus, that were associated with the macrophytes, made up only 2% of total biomass, and were very unevenly distributed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, M. G. & J. B. Low, 1976. Use of sago pondweed by waterfowl on the Delta Marsh, Manitoba. The Journal of Wildlife Management 40: 233–242.

    Article  Google Scholar 

  • Bajer, P. G. & G. Sullivan, 2009. Effects of a rapidly increasing population of common carp in vegetative cover and waterfowl in a recently restored Midwestern shallow lake. Hydrobiologia 632: 235–245.

    Article  Google Scholar 

  • Balat, F., 1970. On the wing-moult in Mallard Anas platyrhynchos in Czechoslovakia. Zoologicke Listy 19: 135–144.

    Google Scholar 

  • Barko, J. W. & F. James, 1998. Effects of submersed macrophytes on nutrient dynamics, sedimentation and resuspension. In Jeppesen, E., M. Sondergaard, M. Sondergaard & K. Christoffersen (eds), The Structuring Role of Submersed Macrophytes in Lakes. Springer, New York: 397–407.

    Google Scholar 

  • Bauer, K. M. & U. N. Glutz von Blotzheim, 1968. Handbuch der Vögel Mitteleuropas Band 2. Akademische Verlagsgesellschaft Frankfurt am Main, Germany.

    Google Scholar 

  • Bauer, K. M. & U. N. Glutz von Blotzheim, 1969. Handbuch der Vögel Mitteleuropas Band 3. Akademische Verlagsgesellschaft Frankfurt am Main, Germany.

    Google Scholar 

  • Bauer, K. M., E. Bezzel & U. N. Glutz von Blotzheim, 1973. Handbuch der Vögel Mitteleuropas Band 5. Akademische Verlagsgesellschaft Frankfurt am Main, Germany.

    Google Scholar 

  • Baumgärtner, D. & K.-O. Rothaupt, 2003. Predictive length—dry mass regressions for freshwater invertebrates in a pre-alpine lake littoral. International Review of Hydrobiology 88: 453–463.

    Article  Google Scholar 

  • Bezzel, E. & R. Prinzinger, 1990. Ornithologie. Ulmer, Stuttgart.

    Google Scholar 

  • Bowen, S. H., E. V. Lutz & M. O. Ahlgren, 1995. Dietary protein and energy as determinants of food quality: trophic strategies compared. Ecology 76: 899–907.

    Article  Google Scholar 

  • Boyd, H., 1961. The flightless period of the Mallard in England. Wildfowl Trust Annual Report 12: 140–143.

    Google Scholar 

  • Busching, W.-D., 1995. Handbuch der Gefiederkunde europäischer Vögel. Aula, Wiesbaden.

    Google Scholar 

  • De Leeuw, J. J., 1997. Demanding Divers: Ecological Energetics of Food Exploitation by Diving Ducks. PhD thesis, University of Groningen, Groningen: 147–178.

  • Döpfner, M. & H.-G. Bauer, 2008a. Störungen von Wasservögeln während der Schwingenmauser und deren Bedeutung für die Qualität eines Mauserquartiers – ein Vergleich zweier Gebiete am Bodensee. Ornithologische Jahreshefte für Baden-Württemberg 24: 105–125.

    Google Scholar 

  • Döpfner, M. & H.-G. Bauer, 2008b. Phänologie der Schwingenmauser ausgewählter Wasservogelarten am westlichen Bodensee im Jahr 2007. Vogelwelt 129: 395–408.

    Google Scholar 

  • Fox, A. D., P. Hartmann & I. K. Petersen, 2008. Changes in body mass and organ size during remigial moult in common scoter Melanitta nigra. Journal of Avian Biology 39: 35–40.

    Article  Google Scholar 

  • Guilelemette, M., D. Pelletier, J.-M. Grandbois & P. J. Butler, 2007. Flightlessness and energetic cost of wing moult in a large Sea duck. Ecology 88: 2936–2945.

    Article  Google Scholar 

  • Haas, K., U. Köhler, S. Diehl, P. Köhler, S. Dietrich, S. Holler, A. Jaensch, M. Niedermaier & J. Vilsmeier, 2007. Influence of fish on habitat choise of water birds: a whole system experiment. Ecology 88: 2915–2925.

    Article  PubMed  Google Scholar 

  • Hargeby, A., 1990. Macrophyte associated invertebrates and the effect of habitat permanence. Oikos 57: 338–346.

    Article  Google Scholar 

  • Hargeby, A., G. Andersson, I. Blindow & S. Johansson, 1994. Trophic web structure in a shallow eutrophic lake during a dominance shift from phytoplankton to submerged macrophytes. Hydrobiologia 279(280): 83–90.

    Article  Google Scholar 

  • Hauri, R., 1989. Zum Vorkommen und zur Biologie der Kobenente Netta rufina in der Schweiz 1974–1988 mit besonderer Berücksichtigung des Thuner Sees. Der Ornithologische Beobachter 86: 69–87.

    Google Scholar 

  • Hidding, B., E. S. Bakker, F. Keuper, T. de Boer, P. P. de Vries & B. A. Nolet, 2010. Differences in tolerance of pondweeds and Charophytes to vertebrate herbivores in a shallow Baltic estuary. Aquatic Botany 93: 123–126.

    Article  Google Scholar 

  • Hilt, S., 2006. Recovery of Potamogeton pectinatus L. stands in a shallow eutrophic lake under extreme grazing pressure. Hydrobiologia 570: 95–99.

    Article  Google Scholar 

  • Hurlbert, S. H., W. Loayaza & T. Moreno, 1986. Fish-flamingo-plankton interaction in the Peruvain Andes. Limnology and Oceanography 31: 457–468.

    Article  Google Scholar 

  • Hurter, H., 1979. Nahrungsökologie des Blässhuhn Fulica atra an den Überwinterungsgewässern im nördlichen Voralpenland. Der Ornithologische. Beobachter 76: 257–288.

    Google Scholar 

  • Idestam-Almquist, J., 1998. Waterfowl hebivory on Potamogeton pectinatus in the Baltic Sea. Oikos 81: 323–328.

    Article  Google Scholar 

  • Jacoby, H. & H. Leuzinger, 1972. Die Wandermuschel Dreissena polymorpha als Nahrungsgrundlage für Wasservögel am Bodensee. Anzeiger der Ornithologischen Gesellschaft Bayern 11: 26–35.

    Google Scholar 

  • James, M. R., M. Weatherhead, C. Stranger & E. Graynoth, 1998. Macroinvetrebrate distribution in the littoral zone of Lake Coleridge, South Island, New Zealand – effects of habitat stability, wind exposure, and macrophytes. New Zealand Journal of Marine and Freshwater Research 32: 287–305.

    Article  Google Scholar 

  • James, W. F., J. W. Barko & M. G. Butler, 2004. Shear stress and sediment resuspension in relation to submersed macrophyte biomass. Hydrobiologia 515: 181–191.

    Article  Google Scholar 

  • Jupp, B. P. & D. H. N. Spence, 1977. Limitations of macrophytes in a eutrophic lake, Loch Leven. II Wave action, sediments and waterfowl grazing. Journal of Ecology 65: 431–446.

    Article  CAS  Google Scholar 

  • Kiorboe, T., 1980. Distribution and production of submerged macrophytes in Tipper Grund Ringkobing-Fjord, Denmark, and the impact of waterfowl grazing. Journal of Applied Ecology 17: 675–687.

    Article  Google Scholar 

  • Köhler, P. & U. Köhler, 2009. Phänologie der Schwingenmauser von Kolbenente Netta rufina am „Ismaninger Speichersee mit Fischteichen“. Vogelwarte 47: 89–95.

    Google Scholar 

  • Lauridsen, T. L., E. Jeppesen & M. Sondergaard, 1994. Colonization and succession of submerged macrophytes in shallow Lake Vaeng during the first five year following fish manipulation. Hydrobiologia 275(276): 233–242.

    Article  Google Scholar 

  • Lauridsen, T. L., H. Sandsten & P. H. Moller, 2003. The restoration of a shallow lake by introducing Potamogeton spp: The impact of waterfowl grazing. Lakes & Reservoirs Research and Management 8: 177–187.

    Article  Google Scholar 

  • Llorente, G. A., X. Ruiz & J. Serra-Cobo, 1986. Autumnal feeding of Red-crested Pochard Netta rufina in the Ebro delta, Spain. Vie et Milieu 36: 97–108.

    Google Scholar 

  • Lodge, D. M., G. Cronin, E. Van Donk & A. J. Froehlich, 1998. Impact of herbivory on plant standing crop: comparisons among biomes, between vascular and nonvascular plants, and among freshwater herbivore taxa. In Jeppessen, E., M. Sondergaard, M. Sondergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes, Ecological Studies, Vol. 131. Springer, New York: 150–174.

    Google Scholar 

  • Marklund, O. & H. Sandsten, 2002. Reduction of benthic macroinvertebrates due to waterfowl foraging on submerged vegetation during autumn migration. Aquatic Ecology 36: 541–547.

    Article  Google Scholar 

  • Marklund, O., H. Sandsten, L.-A. Hansson & I. Blindow, 2002. Effects of waterfowl and fish on submerged vegetation and macroinvertebrates. Freshwater Biology 47: 2049–2059.

    Article  Google Scholar 

  • Milberg, P., L. Gezelius, I. Blindow, L. Nilsson & T. Tyrberg, 2002. Submerged vegetation and the variation in the autumn waterfowl community at Lake Takern, southern Sweden. Ornis Fennica 79: 72–81.

    Google Scholar 

  • Noordhuis, R., D. T. van der Molen & M. van der Berg, 2002. Response of herbivorous waterbirds to the return of Chara in Lake Veluwemeer,The Netherlands. Aquatic Botany 72: 349–367.

    Article  Google Scholar 

  • O′Hare, M. T., R. A. Stillmann, J. McDonell & L. R. Wood, 2007. Effects of mute swan grazing on a keystone macrophyte. Freshwater Biology 52: 2463–2475.

    Article  Google Scholar 

  • Portugal, S. J., J. A. Green & P. J. Butler, 2007. Annual changes in body mass and resting metabolism in captive barnacle geese Branta leucopsis: the importance of wing moult. Journal of Experimental Biology 210: 1391–1397.

    Article  PubMed  Google Scholar 

  • Pöysä, H., 1986. Foraging niche shifts in multispecies dabbling duck Anas spp. feeding groups: harmful and beneficial interactions between species. Ornis Scandinavia 17: 333–346.

    Article  Google Scholar 

  • Reichholf, J., 1975. Biogeographie und Ökologie der Wasservögel im subtropisch-tropischen Südamerika. Anzeiger der Ornithologischen Gesellschaft in Bayern 14: 1–69.

    Google Scholar 

  • Rip, W. J., N. Rawee & A. De Jong, 2006. Alternation beween clear, high-vegetation and turbid, low-vegetation states in a shallow lake: the role of birds. Aquatic Botany 85: 184–190.

    Article  Google Scholar 

  • Rösch, R., I. Seier & M. Wittig, 2007. Karpfen Cyprinus carpio am Bodensee. Aktuelles aus Fluss- und Seenfischerei 1: 10–13.

    Google Scholar 

  • Roßknecht, H., 2006. Zur limnologischen Entwicklung des Bodensee-Untersees von 1969–2005. Internationale Geswässerschutzkommission für den Bodensee 57: 1–17.

    Google Scholar 

  • Sandsten, H. & M. Klaassen, 2008. Swan foraging shapes spatial distribution of two submerged plants, favouring the preferred prey species. Oecologia 156: 569–576.

    Article  PubMed  Google Scholar 

  • Sandsten, H., M. Bekliouglu & Ö. Ince, 2005. Effects of waterfowl, large fish and periphyton on the spring growth of Potamogeton pectinatus L. in Lake Mogan, Turkey. Hydrobiologia 537: 239–248.

    Article  Google Scholar 

  • Santamaria, L., 2002. Selective waterfowl herbivory affects species dominance in a submerged plant community. Archiv für Hydrobiologie 153: 353–365.

    Google Scholar 

  • Schmieder, K. & A. Lehmann, 2004. A spatio-temporal framework for efficient inventories of natural resources: A case study with submerged macrophytes. Journal of Vegetation Science 15: 807–816.

    Google Scholar 

  • Schmieder, K., S. Werner & H.-G. Bauer, 2006. Submersed macropyhtes as a food source for wintering waterbirds at Lake Constance. Aquatic Botany 84: 245–250.

    Article  Google Scholar 

  • Schröder, R., 1988. Die Erosion der Uferbank des Untersees (Bodensee). Spätfolgen der Eutrophierung und hydrologischer Phaenomene. Archiv für Hydrobiologie 112: 265–277.

    Google Scholar 

  • Schuster, S., 2008. Die Flügelmauser bei Wasservögeln am Bodensee: Konsequenzen für den Naturschutz. Ornithologischer Anzeiger 47: 3–22.

    Google Scholar 

  • Sondergaard, M., L. Bruun, T. Lauridsen, E. Jeppessen & V. Madsen, 1996. The impact of grazing waterfowl on submerged macropyhtes: In situ experiments in a shallow eutrophic lake. Aquatic Botany 53: 73–84.

    Article  Google Scholar 

  • Sondergaard, M., T. L. Lauridsen, E. Jeppesen & L. Bruun, 1998. Macrophyte-waterfowl interactions: tracking a variable resource and the impact of herbivory on plant growth. In Jeppessen, E., M. Sondergaard, M. Sondergaard & K. Christoffersen (eds), The Structuring Role of Submerged Macrophytes in Lakes, Ecological Studies, Vol. 131. Springer, New York: 299–306.

    Google Scholar 

  • Spence, D. H. N., 1982. The zonation of plants in freshwater lakes. Advances in Ecological Research 12: 37–125.

    Article  Google Scholar 

  • Stresemann, E. & V. Stresemann, 1966. Die Mauser der Vögel. Journal für Ornithologie 107: 1–447.

    Google Scholar 

  • Suter, W., 1982. Vergleichende Nahrungsökologie von überwinternden Tauchenten Bucephala, Aythya und Blässhuhn Fulicula atra am Untersee-Ende Hochrhein (Bodensee). Der Ornithologische Beobachter 79: 225–254.

    Google Scholar 

  • Szijj, J., 1965. Ökologische Untersuchungen an Entenvögeln (Anatidae) des Ermatinger Beckens (Bodensee). Die Vogelwarte 23: 1–70.

    Google Scholar 

  • Torn, K., G. Martin, J. Kotta & M. Kupp, 2010. Effects of different types of mechanical disturbance on a Charophyte dominated macrophyte community. Estuarine, Coastal and Shelf Science 87: 27–32.

    Article  CAS  Google Scholar 

  • Van Donk, E. & A. Otte, 1996. Effects of grazing by fish and waterfowl on the biomass and species composition of submerged macrophytes. Hydrobiologia 340: 285–290.

    Article  Google Scholar 

  • Van Donk, E., E. De Deckere, J. G. P. Klein Breteler & J. Meulemans, 1994. Herbivory by waterfowl and fish on macrophytes in a biomanipulated lake: effects on long-term recovery. Verhandlungen des Internationalen Verein Limnologie 25: 1239–2143.

    Google Scholar 

  • Von Krosigk, E. & P. Köhler, 2000. Langfristige Änderungen von Abundanz und räumlicher Verteilung mausernder Wasservogelarten nach Änderungen von Trophiestatus, Fischbesatz und Wasserstand im Ramsar-Gebiet „Ismaninger Speichersee mit Fischteichen“. Ornithologischer Anzeiger 39: 135–158.

    Google Scholar 

  • Werner, S., M. Mörtl, H.-G. Bauer & K.-O. Rothaupt, 2005. Strong impact of wintering waterbirds on zebra mussel Dreissena polymorpha at Lake Constance, Germany. Freshwater Biology 50: 1412–1426.

    Article  Google Scholar 

  • Winfield, I. J. & D. K. Winfield, 1994. Possible competitive interactions between overwintering tufted duck (Aythya fuligula (L.)) and fish populations of Lough Neagh, Northern Ireland: evidence from diet studies. Hydrobiologia 279(280): 377–386.

    Article  Google Scholar 

Download references

Acknowledgements

We thank K.O. Rothhaupt for chairing the Cooperative Research Centre 454 at Lake Constance and Deutsche Forschungsgemeinschaft (DFG) for funding this CRC. We gratefully acknowledge the assistance of the scientific diving group of the University of Constance: Martin Wolf, John Hesselschwerdt, Stefan Werner, Martin Köhnke and Almut Hanselmann. We also thank the field assistants Gabriele Schafheitle and Andreas Michalik.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Matuszak.

Additional information

Guest editors: F. A. Comín & S. H. Hurlbert / Limnology and Aquatic Birds: Monitoring, Modelling and Management

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matuszak, A., Mörtl, M., Quillfeldt, P. et al. Exclosure study on the exploitation of macrophytes by summering and moulting waterbirds at Lower Lake Constance. Hydrobiologia 697, 31–44 (2012). https://doi.org/10.1007/s10750-012-1168-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10750-012-1168-z

Keywords

Profiles

  1. Petra Quillfeldt